
LiveCode Converted -

Contacts.fmp12 ReadMe

LiveCode Converted - Contacts.fmp12 ReadMe

Contacts.livecode Conversion Details1

Adding the Button Bar Widget 41.1

Overview - Converted Contacts.fmp12 Database 81.2

SVG to PNG Button Images Changes 121.3

Popover Implementation Details 141.4

WebViewer Implementation Details 181.5

Members Layout Features 241.6

Contact List Layout Notes 291.7

LiveCode Converted - Contacts.fmp12 ReadMe - 3

Contacts.livecode

Conversion Details

LiveCode Converted - Contacts.fmp12 ReadMe - 4

Adding the Button Bar Widget

FmPro Migrator will add the Button Bar widget to your new stack file automatically - and it will be

displayed during the conversion process. But this widget needs added to the LiveCode IDE before

it will be displayed within the stack from within the LiveCode IDE. Follow these instructions to

install the Button Bar widget.

Button Bar Widget - Unknown Module Error

If you open the newly created Application.livecode stack before installing the Button Bar widget,

you will see the Unknown Module error dialog.

This error will not occur during the actual conversion process because the Button Bar widget is

built into FmPro Migrator and is displayed on screen during the conversion process.

Button Bar Widget - Uninstalled Widget Outline Displayed in Browse Status Area

Group

If you close the error dialog and edit the Browse Status Area/Find Status Area groups, you will see

the Button Bar widget outline when clicking on it.

LiveCode Converted - Contacts.fmp12 ReadMe - 5

Download Button Bar Widget - LiveCode Store Web Site

The Button Bar widget can be downloaded from the LiveCode store at

https://livecode.com/extensions/

Download and unzip the Button Bar widget folder.

The Button Bar widget is not yet available within the store link in the Extensions Manager of the

LiveCode IDE.

Download Button Bar Widget - FmPro Migrator Web Site

The Button Bar widget can be downloaded from the same web page where fully functional

versionFmPro Migrator was downloaded (not the Free Trial version). Download and unzip the

Button Bar widget folder.

https://livecode.com/extensions/

LiveCode Converted - Contacts.fmp12 ReadMe - 6

The Button Bar widget is not yet available within the store link within the Extensions Manager of

the LiveCode IDE - but it is available from the LiveCode store website.

Extension Builder Window

From within the LiveCode IDE, select the Tools -> Extension Builder menu item. (1) Click the folder

icon in the upper right corner of the Extension Builder window, select the buttonbar.lcb file from the

Button Bar widget folder. (2) Click the Install button.

Quit and re-open the LiveCode IDE so that the dictionary entries are displayed for the new widget

you have just installed.

LiveCode Converted - Contacts.fmp12 ReadMe - 7

Button Bar Widget - Displayed in Browse Status Area Group

Once the Button Bar widget has been installed, open the newly created Application.livecode

LiveCode stack to see it displayed.

Button Bar Widget - Displayed in Find Status Area Group

Clicking on the Find button in the Browse Status Area group, will display the Find Status Area

group.

LiveCode Converted - Contacts.fmp12 ReadMe - 8

Overview - Converted Contacts.fmp12 Database

Included Files

The files in this package include:

Contacts <version>.livecode

Contacts.EXE Windows 64-bit application

Contacts.app macOS application.

LiveCode Converted - Contacts ReadMe.pdf (this manual)

FmPro Converted Scripts.txt

FmPro Original Scripts.txt

MigrationProcess.db3

Missing Relationships Report.xls

Relationships.JSON

SQLColumnTypes.JSON

SQLiteDB.db3

Stored_Calc_Library.livecodescript

Unstored_Calc_Library.livecodescript

FmPro Migrator 9.26

2/11/2021

Structure of Standalone App - macOS

Inside the macOS app bundle, the (1) standalone app is located within the /Contents/MacOS path

shown above.

This path also includes PDF printing and security externals.

The Externals folder contains additional externals for JSON, XML, ZIP and tsNET networking.

Database drivers are included in the database_drivers subfolder.

Note: Your own application will contain a different selection of Externals and libraries based upon

the features you selected in the standalone builder.

LiveCode Converted - Contacts.fmp12 ReadMe - 9

Structure of Standalone App - macOS - SQLite

For this demo app, the (2) SQLite database is stored within the Contents/Resources/_MacOS

folder as required by Apple guidelines.

Note: For a single-user demo app which isn't going to get updated often, it is Ok to store the SQLite

database inside the app bundle.

But for apps where the application may change on a regular basis - it would be better to store the

SQLite database somewhere else, such as a folder named for the application within the

Documents directory. Keeping the database file separate from the application will insure that the

user's data doesn't get deleted when updating the application.

Structure of Standalone App - Windows

On Windows, the standalone EXE is located directly inside the folder created by the standalone

builder. The (3) SQLite database is at the top-level of the folder along with the EXE.

LiveCode Converted - Contacts.fmp12 ReadMe - 10

Structure of Standalone App - Windows - Externals

The Windows app has database drivers, externals and a (4) CEF folder inside the Externals folder.

Inside this sample app, there is a browser object which requires the addition of the 148mb sized

CEF (Chromium Embedded Framework) folder.

Layouts Converted

1Contact Details Modified - this is a version of the Contact Details layout which has been modified

in FileMaker prior to conversion.

2Members - The unmodified version of the Members layout.

LiveCode Converted - Contacts.fmp12 ReadMe - 11

3Contact List - The unmodified Contact List layout.

4Contact Details - The unmodified Contact Details layout.

Note: The numbers at the left of each layout aren't significant other than for showing these

converted layouts in alphabetical order in the list of layouts. FmPro Migrator processes the layouts

in alphabetical order and also sorts them in the same order when creating the drop down Form

menu for the status area. This list of converted layouts (which are now cards in the LiveCode

stack) can easily be modified after conversion.

LiveCode Converted - Contacts.fmp12 ReadMe - 12

SVG to PNG Button Images Changes

This layout has been modified in FileMaker to improve the conversion process.

SVG Buttons Replaced with PNG Files

In this screenshot of the converted layout shown in the LiveCode app, the SVG button bar type

buttons have been replaced with PNG files in the FileMaker database, prior to conversion. At this

time FmPro Migrator isn't able to convert the SVG based images, though the outline of an invisible

button will get created.

DataGrid Add Button

The green + button at the top right of the DataGrid adds a new blank record to the grid. Auto-Enter

fields are calculated and inserted into a new record.

(4) Notice that the green + button is clipped at the right side. This is due to the object being located

within the segmented group containing the objects within the Address tab of the original tab

control.

LiveCode Converted - Contacts.fmp12 ReadMe - 13

Moving DataGrid Add Record Button

To solve this problem, it is easy to edit the contents of the group in the LiveCode IDE to move

these two objects up by 10 pixels and over by about 40 pixels. You would want to make the same

change to the other groups representing the other tabs, so that the objects don't appear to move

around as the user clicks on the individual tabs.

LiveCode Converted - Contacts.fmp12 ReadMe - 14

Popover Implementation Details

Popover buttons are implemented as LiveCode groups. A popover is shown by clicking the

popover button, and it is hidden by clicking the close button inside the popover. When a popover is

hidden, it is moved over to the right side of the card.

(1) Clicking the popover button (2) opens the popover on the 1Contact Details - Modified card.

There are (3) Close buttons at the top and bottom of the popover group. In FileMaker, these

buttons link to the single line instruction "Close Popover" and are automatically converted to the

following script:

on mouseUp

 closePopover the short name of the owner of me

end mouseUp

Note: One difference with this implementation compared with FileMaker, the popover is not a

modal window, because it isn't a window it is simply a group of objects which gets moved into

position and made visible to the user. Fields inside the popover are usable, and field data edited

LiveCode Converted - Contacts.fmp12 ReadMe - 15

in the popover group is automatically written to the database.

Popover showLoc position

By default, FmPro Migrator selects a location where the popover is to be shown. This might not be

the perfect location, but it can be easily changed. For the example shown, the popover displays a

little too far left and is too high. This causes some unexpected movement of the scrollbars when

moving the cursor.

To change the showLoc location, select the View -> Show Invisible Objects menu item from the

LiveCode menus. This will display the red rectangle object named Popover1_showLoc. This

object has its coordinates locked by default, but it can be unlocked and moved anywhere the

developer desires.

Why is the showLoc rectangle visible with the opaque setting of the group being true?

The reason is due to the layer setting for the objects. The popover group is set to layer = 285,

because it gets created first, then the objects in the popover group get created, the hideLoc

rectangle is created with layer = 297, and then the showLoc rectangle is created and set to layer =

299. The layer value effectively defines the z-ordering of the objects. So objects with a higher layer

number sit above the objects at a lower level. This property can be easily changed as needed.

LiveCode Converted - Contacts.fmp12 ReadMe - 16

Popover hideLoc position

There is a corresponding red hideLoc rectangle over to the right side of the card. This object

determines the location where the popover group gets placed after it is closed.

The code shown above is used throughout the application to show/hide popovers.

Note: (4) Notice that the popover group is moved but not hidden during development in the IDE as

a convenience. Of course this can be easily changed by removing the "if the environment is not

development" part of the instruction.

LiveCode Converted - Contacts.fmp12 ReadMe - 17

Renaming & Setting Popover Properties

When the popover is visible in the LiveCode IDE, its properties can be changed including the

name, show name property, opaque background properties etc.

To edit a popover group, click into the card with the pointer tool (editing mode), this will show the

outline of the Layout_Objects_Group which contains all of the objects of the card. Click the Edit

Group button in the LiveCode top toolbar. Then click the popover group and click Edit Group

again. To reduce the number of steps required to edit a group, you can enable the Select Grouped

option on the LiveCode toolbar.

LiveCode Converted - Contacts.fmp12 ReadMe - 18

WebViewer Implementation Details

Webviewer Implemented as Browser Widget - Company Tab

The webviewer is implemented as a LiveCode browser widget, the URL is populated via code in

the refreshFields card handler using the following code:

 -- ====================== Browser URL =======================

 set the url of widget "Browser1" to

setBrowserURLPrefix(gDataCRArray[tCurrentBaseTableName][1]["website"])

The setBrowserURLPrefix() function adds "https://" before the URL unless there is already a prefix

starting with http/https/file already in the URL.

As the user navigates between records, the URL and browser contents change automatically

based upon the data stored in the database.

Note: On macOS, notice that the browser and other objects on the Company tab of the tab control

are hidden when clicking another tab - this is by design, and matches the original functionality.

LiveCode Converted - Contacts.fmp12 ReadMe - 19

FileMaker WebViewer Change

Inside the original FileMaker webviewer, the calculation shown above was replaced with a simple

reference to the field containing the URL. The checking of the URL prefix was implemented using

the setBrowserURLPrefix() LiveCode function.

The unmodified version of the layout is shown in the card named 4Contact Details. FmPro Migrator

has commented out the conditional, leaving it for manual development by the developer after

detecting the "(" character.

LiveCode Converted - Contacts.fmp12 ReadMe - 20

Windows Browser Widget Differences

On Windows, LiveCode uses the CEF (Chromium Embedded Framework) to implement the

browser widget.

However, the widget gives the appearance of functioning like a palette window which floats over

everything else. [At the present time, this is a known problem on Windows. But an easy

workaround is shown below.] This means that when the different tabs are clicked, the browser

covers the DataGrid rows which should be displayed.

FmPro Migrator implements tab controls as separate groups, so clicking a tab shows the group

which was clicked and hides the other groups.

The following code enables a simple workaround for this difference in functionality between

platforms.

LiveCode Converted - Contacts.fmp12 ReadMe - 21

Hiding the Browser Widget - Segmented Control

Each tab control tab is implemented as a group of objects in a group with a segmented control

widget representing the tab.

Each segmented control contains code which shows/hides the other groups as needed when the

user clicks a segment. In this example, there are 30 lines of code performing these tasks.

LiveCode Converted - Contacts.fmp12 ReadMe - 22

Hide Widget Code

Adding the code:

hide widget "Browser1"

to each of the other tabs will hide the browser widget when the segment is clicked.

LiveCode Converted - Contacts.fmp12 ReadMe - 23

Show Widget Code

Adding the code:

show widget "Browser1"

to the "company" tab for each of the other segmented controls, and adding

hide widget "Browser1"

to each of the other tabs will hide the browser widget when the segment is clicked.

This way the browser widget will be displayed when it is needed, and hidden when it is not

needed.

Note: All of the changes shown in these screenshots has been implemented within the included

stack: Contacts <Version>_browser_changes.livecode

LiveCode Converted - Contacts.fmp12 ReadMe - 24

Members Layout Features

Members Layout - Buttons & Description

The Members layout includes a sample of buttons across the top which were assigned to single

step script steps in FileMaker.

These buttons include:

Save Current Record as PDF

LiveCode Converted - Contacts.fmp12 ReadMe - 25

Save Current Record as XLS

Save FoundSet as PDF

Save FoundSet as XLS

Save Blank Record as PDF

Save Current Record Buttons

For each of these buttons, a PDF or tab delimited file with an .XLS file extension will be created

and saved to disk. The file will then be opened automatically with the appropriate application.

The saveRecordsAsExcel feature uses a card level handler with this name, which has been

generated with the specific fields which exist on this card of the stack.

The saveRecordsAsPDF feature uses a stack level handler used throughout the application which

doesn't require changes based upon the names of the fields on the card.

LiveCode Converted - Contacts.fmp12 ReadMe - 26

Save Foundset Buttons

Clicking the Save Foundset as PDF will create a PDF of the foundset of records, if there is a

foundset (as shown in this screenshot 9 of 29 records). If a foundset doesn't exist, then the PDF will

be created with all of the records in the table.

The Save Foundset as XLS works the same way, exporting a foundset if it exists or exporting all of

the records as a TAB delimited file having the XLS file extension.

In each situation, the file is then opened after saving. Of course you can easily change this

behavior within the handlers by commenting out the following command:

launch url "file:" & tPDFFilename

LiveCode Converted - Contacts.fmp12 ReadMe - 27

Save Current Record as PDF Code

The Save Current Record as PDF code is in the "CurrentRecord" CASE block of the switch

statement within the saveRecordsAsPDF stack level handler. It prompts the user to specify a

filename and path while providing a default name which can be changed by the user. After saving

the width and height of the Layout_Objects_Group, it opens printing to PDF, prints the card, closes

printing then restores the size of the Layout_Objects_Group. Once the PDF has been saved it is

opened automatically.

LiveCode Converted - Contacts.fmp12 ReadMe - 28

Save Current Record as XLS Code

Exporting XLS data is performed by the saveRecordsAsExcel handler located in the script for each

converted layout. The "CurrentRecord" CASE block loops thru the fields to gather data for the

tExportDataArray. Then if fills the tExportTitlesArray, outputs the titles to the tOutputData variable

and replaces embedded return characters and TAB characters in the tExportDataArray contents as

it outputs the data to the tOutputData variable.

Once the tOutputData variable has been filled with the titles and the field data, it saves the data to

the output file specified by the user.

LiveCode Converted - Contacts.fmp12 ReadMe - 29

Contact List Layout Notes

Contact List Layout

As a converted list view layout, the fields just display one record of data, until the record navigation

buttons are clicked in the status area above the card.

The merge field <<INITIAL>> above the image field has been converted and does show data

correctly when navigating between records. However the stored calculation defined for this field

unfortunately wasn't converted, but would be straightforward to implement within the

Stored_Calculation_Library.

The reason the data is being displayed is that it was copied from the FileMaker database where

the calculation was performed. New records wouldn't have a value in that field unless a stored calc

was added manually.

List implementation Idea #1 - For Display

A LiveCode DataGrid can display data in a scrolling list view for display purposes (not for printing).

The DataGrid shown in this screenshot is from the 1Contact Details - Modified converted layout.

LiveCode Converted - Contacts.fmp12 ReadMe - 30

Converting a FileMaker portal into a fully functional DataGrid would require adding a relationship

to the database.

However if no relationship was available, it would be possible to manually add and edit a

DataGrid to a card. This would involve writing code to update the grid with records, and existing

examples in the converted Contacts stack provide examples of this functionality.

List implementation Idea #2 - For Printing

If a list view is required for printing purposes, some additional work would be required. By default,

LiveCode doesn't include a list type view like FileMaker.

Some ideas can be gained from the LiveCode printing lesson shown in the screenshot above:

https://livecode.com/docs/9-5-0/core-concepts/printing-in-livecode/

https://livecode.com/docs/9-5-0/core-concepts/printing-in-livecode/

LiveCode Converted - Contacts.fmp12 ReadMe - 31

The section of the lesson regarding "Printing a Complex Layout" includes a discussion of how to

print Header/Footer/Body section information to a PDF file or a printer.

	LiveCode Converted - Contacts.fmp12 ReadMe
	Table of Contents
	Contacts.livecode Conversion Details
	Adding the Button Bar Widget
	Button Bar Widget - Unknown Module Error
	Button Bar Widget - Uninstalled Widget Outline Displayed in Browse Status Area Group
	Download Button Bar Widget - LiveCode Store Web Site
	Download Button Bar Widget - FmPro Migrator Web Site
	Extension Builder Window
	Button Bar Widget - Displayed in Browse Status Area Group
	Button Bar Widget - Displayed in Find Status Area Group

	Overview - Converted Contacts.fmp12 Database
	Included Files
	Structure of Standalone App - macOS
	Structure of Standalone App - macOS - SQLite
	Structure of Standalone App - Windows
	Structure of Standalone App - Windows - Externals
	Layouts Converted

	SVG to PNG Button Images Changes
	SVG Buttons Replaced with PNG Files
	DataGrid Add Button
	Moving DataGrid Add Record Button

	Popover Implementation Details
	Popover showLoc position
	Popover hideLoc position
	Renaming & Setting Popover Properties

	WebViewer Implementation Details
	Webviewer Implemented as Browser Widget - Company Tab
	FileMaker WebViewer Change
	Windows Browser Widget Differences
	Hiding the Browser Widget - Segmented Control
	Hide Widget Code
	Show Widget Code

	Members Layout Features
	Members Layout - Buttons & Description
	Save Current Record Buttons
	Save Foundset Buttons
	Save Current Record as PDF Code
	Save Current Record as XLS Code

	Contact List Layout Notes
	Contact List Layout
	List implementation Idea #1 - For Display
	List implementation Idea #2 - For Printing

