
FmPro Migrator - FileMaker
Pro to PHP Conversion

Procedure

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure

Step 1 - Import Database Info - FileMaker Pro1

Licensing FmPro Migrator 51.1

Importing FileMaker Pro Database Info - PHP Conversion 91.2

Step 1 - Import Database Info - Microsoft Access2

Importing Microsoft Access Database Info 172.1

Step 1 - Import Database Info - Visual FoxPro3

Importing Visual FoxPro Applications 193.1

PHP Conversion Processing4

PHP Conversion Preferences 214.1

PHP Conversion - Preflight Check 284.2

Using Licensed Mode - PHP Conversion 294.3

About the Generated PHP Web Application5

PHP Conversion - Database Configuration Notes 325.1

Using the Generated Web Application 335.2

Files Which Are Preserved When Re-Generating the Application 385.3

Generated Report Files 395.4

Upgrading Web Application Components 435.5

Customizing the Generated Web Application 465.6

Web Browser Compatibility 495.7

Layout Object Script Steps to JavaScript/PHP Conversion 535.8

Using the ExtJS Grid 565.9

Using Save Records as PDF 625.10

PHP Conversion - Manual Tasks6

Manual Tasks - Login & Role Based Security 656.1

Manual Tasks - Model Files 766.2

Manual Tasks - Too Many Relationships 806.3

Manual Tasks - View Files 856.4

Manual Tasks - Controller Files and Converted PHP Scripts 906.5

Manual Tasks - pChart Code 926.6

Manual Tasks - Fusion Charts Code 956.7

Manual Tasks - Value Lists 976.8

Manual Tasks - Tab Controls 996.9

Manual Tasks - jqGrid PHP Code 1006.10

Manual Tasks - Global Fields, Calculation Fields 1036.11

Manual Tasks - Other Items 1066.12

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 4

Step 1 - Import Database Info
- FileMaker Pro

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 5

Licensing FmPro Migrator

As of FmPro Migrator v11, all FmPro Migrator downloads are fully functional with features
unlocked via a single license key.
This section of the manual shows how to enter the license key to unlock the features within
FmPro Migrator.

FmPro Migrator 11.01
4/14/2024

Demo Edition Dialog

When launched the first time, FmPro Migrator will be running in Demo mode as shown in this
screenshot. Clicking the Ok button opens the order page of the website.
In addition to transferring data for 5 database fields, the conversion features shown on the GUI
tab of the Migration Process window will convert 5 layouts or forms/reports & scripts.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 6

Demo Mode - About Tab

Clicking the "License" button on the About tab, or selecting the Help -> License/About menu items
will open the About window where you can enter the license key.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 7

About/License Window

On the About FmPro Migrator window:
(1) Product name and version licensed, (2) Demo or Licensed will be displayed, (3) The Upgrade
button opens the website order page, (4) Email address associated with your license key, (5)
Clipboard button reads the license key from the clipboard, (6) License key field, (7) Email Support
button opens the Contact form on the website, (8) Visit Website opens the order page in Demo
mode or the product page in Licensed mode, (9) Check for Update opens the downloads page
with the latest software version, (10) Ok button closes the About window.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 8

Pasting License Key

Your product license key will be displayed in your web browser when your order has been
completed. It will also will be sent via email at the same time, please check your SPAM folder if
the email doesn't arrive in a few minutes.

(1) Copy the license key to the clipboard and click the clipboard icon. Once validated (2) the
product name will change, (3) the License validation date will be updated, (4) your email address
will be displayed, and (5) the license key will be displayed in the field under the Email address
when clicking inside the field. In this screenshot the license key has been obscured.

And that is all you need to do to license all of the features of FmPro Migrator.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 9

Importing FileMaker Pro Database Info - PHP Conversion

This document explains the process of converting FileMaker Pro (as well as other databases) into
PHP web applications.

Document Version 13
Updated for FmPro Migrator Platinum Edition 11.01.
Added new Licensing FmPro Migrator info, updated screenshots.
4/14/2024

FileMaker 12+ Notes

FileMaker 12+ versions represent a major improvement in the design surface, enhanced
functionality, performance and a change in the binary file format. This change includes major
changes to the FileMaker layout XML format used by FmPro Migrator to generate PHP web forms.
Though all themes are supported if applied to individual objects, not all new features (rounded
corners of fields, object blending features) are supported at this time.

FileMaker 11 Notes - Unicode Characters

Issue #1: Unescaped Unicode Characters
Note: There is a documented issue with FileMaker Pro/Advanced 11 database DDR XML file
exporting which can cause problems during the conversion process. FileMaker 11 puts
unescaped high ASCII and Unicode characters onto the clipboard and into the DDR XML file.
These errors can prevent the conversion process from working properly, as a valid XML file needs
to be read for processing purposes. The copying of info to and from the clipboard may also be
affected by this issue.

Workaround #1: If this problem affects the database file you are processing, consider switching to
FileMaker Pro Advanced 10 or FileMaker Pro 12+ version for the exporting process.

Workaround #2: If your database also contains FileMaker 11 charts, then consider manually
copying only those layouts containing charts into FmPro Migrator via the clipboard.
When switching between different versions of FileMaker for layout importing, select the correct
version of FileMaker from the source database menu on the FileMaker tab of the FmPro Migrator
main window. FmPro Migrator does handle mixed layout versions without difficulty, as the format
version of each layout is checked during the processing, and version differences are handled
automatically.

http://forums.filemaker.com/posts/ae50945cb2

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 10

FileMaker 11 Notes - Container Field Image Transfer

Issue #2: Transferring Container Field Images

FileMaker 11 introduces a new and greatly improved ODBC driver. However FileMaker 11 no
longer supports the use of "SELECT * FROM TableName" SQL command in order to retrieve
container field data. All previous versions of FileMaker supported the export of the JPEG preview
version of the container field contents. FmPro Migrator provides a container field export feature
which exports the requested data type into a file onto the disk. But this process only works
correctly if all records contain the exact same type of data for exporting, for the selected field.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 11

This issue is resolved with the Image Export to SQL Database feature within FmPro Migrator, as
shown on the Tables tab [as shown in this screenshot]. Since this problem is solved

Pre-Migration Tasks - PHP Conversion

Prior to importing FileMaker, Access or Visual FoxPro database applications into FmPro Migrator,
review the database schema and make appropriate changes:

1) The CakePHP framework requires that each database table have a primary key column.

2) FmPro Migrator looks for columns having the Unique and Not Empty validation properties in
order to automatically determine which column should be created as a Primary Key column in the
SQL database. The PK column attributes can be changed after importing by double-clicking the
column name displayed in the Fields List on the Tables tab of the Migration Process window.

3) The detailed instructions for data transfer to SQL databases recommends deleting Global,
Unstored Calc and Summary fields prior to transferring the data. If these columns are deleted,
then the generated PHP web application will display errors about missing columns unless these
columns are restored as virtual fields within the model files.

FmPro Migrator also checks for TOs matching reserved words in the CakePHP framework.
Therefore, it is recommended that developers should import the tables, relationships, value lists
and only 1 layout into FmPro Migrator. Then perform a test conversion so that FmPro Migrator can
perform the pre-flight test on the project. Manually make changes to the FileMaker database,
reimport into FmPro Migrator and test with 1 layout again. Perform this task interactively until the
preflight test passes. Then import the rest of the layouts and scripts into FmPro Migrator in order
to generate the entire PHP web application.
Example: Table name Global should probably be changed to something like: GlobalTable in
order to avoid conflicts.

4) Avoid table names which will require FmPro Migrator to rename the table. If the table name
represents a reserved word in the SQL database being used, it will be renamed with a trailing
underscore character. But the underscore character is a special character to CakePHP signaling
that the following character is to be uppercased as a model name. This can be confusing to
CakePHP, to it is best to avoid these types of names, especially if they are reserved words.
Tables/TOs containing spaces will automatically be replaced with underscore characters, so this
is not generally a problem. But a trailing underscore in the name is to be avoided.

5) If the Basic Authentication Type is selected on the PHP Conversion preferences window,
FmPro Migrator will add two tables (users, tokens) to the MigrationProcess.db3 project file. These
tables will show up in the list of tables in the Migration Process window after clicking the Convert
button on the PHP Conversion window. If a Users table already exists in the list of tables, this

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 12

process will be skipped, and errors will occur when attempting to create or use login accounts.
For best results, if a Users table already exists in the original database solution, rename the table
in FileMaker before performing the conversion.

6) FileMaker databases which have Auto-Enter Creation Date or Modification Date properties
assigned to fields can be easily converted to have the same functionality within the generated
PHP web application. Database fields named: created - will become Auto-Magic CakePHP fields
which will be populated with the creation timestamp when new records are added. Database
fields named: modified or updated, will be updated with a modification timestamp whenever the
record is modified. Therefore it is recommended that fields having these auto-enter properties
should simply be renamed in FileMaker prior to performing the automated conversion. Making the
modification within FileMaker will insure that the changes are correctly reflected within all layout
objects and scripts.

7) FileMaker databases containing repeating fields should be redesigned to eliminate the use of
repeating fields prior to conversion into the PHP web application. FmPro Migrator Platinum Edition
makes this process possible during the database table migration process. Transfer the
repeating fields data to any SQL database using FmPro Migrator Platinum Edition. Then import
the related records back into a new table within FileMaker using an ODBC import from the SQL
database. Create a relationship from the parent table to the newly imported repeating fields table
in FileMaker. Create portals on layouts to replace the original repeating fields. Then, when the
PHP conversion process is done, the portals will be converted into data grid objects in the PHP
web application.

8) The Save Records as PDF script step attached to a button will be directly converted into PHP
code. The generated PHP code will use the html2ps package. Having a folder named html2ps
located in the same folder selected as your ExtJS source directory, will enable FmPro Migrator to
automatically copy this folder into the CakePHP /app/vendors folder during the initial project
creation. The check for this source directory only occurs once, when the CakePHP application is
first created in your htdocs directory.
A modified version of this html2ps directory suitable for use with CakePHP has been uploaded to
the PHP Conversion web page.

9) WebViewer & SuperContainer URLs. FmPro Migrator converts WebViewer objects into iFrames
on the converted PHP web application forms. It is recommended that the prefix of the URL should
be defined within a Global Field for these URLs in order to facilitate the possibility of having to
change the SuperContainer server in the future. The Global field will be defined with an empty
value by default within the beforeFilter() function of the app_controller.php file. Changing this value
within the app_controller will enable calculated URLs to work correctly when the application is
running. Note: If URLs are being stored within the FileMaker database using Stored Calculation
fields, the URL will need to be updated within your database server if the SuperContainer server
is moved. Using Unstored Calc fields to define these URLs will not require this change to the
database table data, as the URL will be calculated automatically as the application is running.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 13

Manual Layout Changes

1) Layout text labels. With FmPro Migrator Platinum Edition 6.79, it is no longer necessary to
manually adjust text labels wider in most cases. A CSS "whitespace: pre" property is
automatically added to each text label to prevent word wrapping. With webkit-based web
browsers, large text blocks will word wrap properly within the bounding rectangle of the text object
- just like within FileMaker. However IE 9 will display these large blocks of text as one long
horizontal line. For these situations, the whitespace CSS property can be removed from the text
label, thus allowing the text to word wrap within the bounds of the text object rectangle on both
webkit and IE 9 web browsers.

2) Image Sizes. Image object bounding rectangles may need to be adjusted to fit the actual
display size of the image on the layout. FmPro Migrator uses the object's bounding rectangle as
the rectangle which will be used to create the object on the web form.

3) Fields displayed as Checkbox and Radio button groups work best when they are laid out either
horizontally or vertically on the layout. Fields taller than 20 pixels are laid out horizontally on the
web form, otherwise they are laid out vertically. Radio Button/Checkbox groups displayed as
columns of objects is supported. These columns of buttons will look best when using a
monospaced font. Customization of the number of columns to display is done within the form
controller.

4) Grouped objects are are converted best if they are ungrouped prior to conversion. Some
grouped objects may be skipped or colors may be wrong if they remain grouped during the
conversion.

5) Grouped Text/Image button objects. Note: FileMaker 12 grouped objects require no changes.
FileMaker developers often create grouped image object with a text label placed over top of the
image. Even if the two objects are ungrouped, the text label being located over top of the image
can prevent the mouse click from reaching the object below. A couple of workarounds include:
Set the text object to have the same script step link as the underlying image. This way the user
can click the text label to activate the linked script step, or if they click around the edge of the text
label and touch the underlying image object the script step will still be triggered. Another
work-around is to build the image object with the embedded text within a graphics program, and
paste the object onto the layout.

6) Field Vertical Size. Field contents will display better if they are at least 23 pixels tall, in order to
display character descenders.

7) FileMaker Radio Button and Checkbox Group Columns. FileMaker displays Radio Buttons and
Checkboxes in multiple columns on the layout if the field object is tall and wide enough. FmPro
Migrator attempts to simulate this same visual behavior for Radio Button and Checkbox Groups
taller than 20 pixels and wider than 94 pixels. Depending upon the average widths of the value list

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 14

items, it may be necessary to change the number of columns which have been estimated by
FmPro Migrator. This change can be made in the calls to the prepareInputGroup() function located
within the form controller file for any form. Unlike FileMaker, the item padding is calculated in
characters instead of actual text width. Therefore the columns only will line up perfectly when
using a monospaced font.
An alternate prepareInputGroup2() function is available within the application_controller.php file
for use with non-monospaced fonts. This enhanced version of the code requries creating a fonts
directory within the webroot directory and adding TrueType font .ttf files. The font name is specified
within the prepareInputGroup2() function.

A Note About Other Databases

This migration process is specifically optimized for the conversion of FileMaker Pro databases
into PHP web applications. This is due to the fact that every layout and field in a FileMaker
database is expected to be data bound to a database table or column. However, Microsoft Access
and Visual FoxPro database applications may have fields which are populated with data via
Queries or FoxPro scripts.

After importing one of these other databases into FmPro Migrator, it could be beneficial to perform
a conversion of the database into a FileMaker Pro .fp7 database file. Then work on this file to
assign tables and fields to each field and layout so that it is functional within FileMaker Pro. It is
also not practical to extract info from ActiveX controls for the building of charts. So if charts are an
important feature of the source database application, charts should be added within the FileMaker
database. Then, when all changes have been made to the FileMaker Pro database, import the
FileMaker Pro database into FmPro Migrator for conversion into the PHP web application. If these
types of changes are not made, it is likely that some converted forms will generate errors due to a
missing table name within the Model and Controller PHP files.

Importing FileMaker Pro Database Info into FmPro Migrator

1) Download and following the instructions in the How to Import FileMaker Pro Databases into
FmPro Migrator PDF manual from the FmPro Migrator support web page. Select Help from the
Help menu in FmPro Migrator and your web browser will open this web page. It is generally a
good idea to migrate the data into the SQL database, and also create relationships in the SQL
database prior to migrating the Layouts into another development environment.

2) If you are transferring data from FileMaker Pro to a SQL database server, then download the
appropriate manual on the support page for the destination SQL database. The Pre-Migration
Preparation Process PDF provides another resource for migrating the data from FileMaker Pro to
SQL database servers.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 15

At the completion of these procedures, your data should already be migrated to the destination
SQL database, and the Layouts, Value Lists, Scripts and Relationships should have been
imported into FmPro Migrator.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 16

Step 1 - Import Database Info
- Microsoft Access

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 17

Importing Microsoft Access Database Info

1) Prior to performing any of the migration procedures listed below, it is recommended that you
review the database structure of the Microsoft Access database(s) you are migrating. It is
important to insure that each table is configured with a Primary Key column. FmPro Migrator looks
for columns having the Unique and Not Empty validation properties in order to automatically
determine which column should be created as a Primary Key column in the SQL database.

2) Download and following the instructions in the How to Import Microsoft Access Databases into
FmPro Migrator PDF manual from the FmPro Migrator support web page. Select Help from the
Help menu in FmPro Migrator and your web browser will open this web page.

3) If you are transferring data from Microsoft Access to a SQL database server, then you will likely
use an importing procedure to import the data from the Access .mdb/.accdb file(s) into the
destination SQL database. [FmPro Migrator supports directly copying data to FileMaker Pro
databases, but not into SQL database servers.]

At the completion of these procedures, your data should already be migrated into the destination
SQL database, and the Forms/Reports, Value Lists, Scripts and Relationships should have been
imported into FmPro Migrator.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 18

Step 1 - Import Database Info
- Visual FoxPro

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 19

Importing Visual FoxPro Applications

1) Prior to performing any of the migration procedures listed below, it is recommended that you
review the database structure of the Visual FoxPro project you are migrating. It is important to
insure that each table is configured with a Primary Key column. FmPro Migrator looks for columns
having the Unique and Not Empty validation properties in order to automatically determine which
column should be created as a Primary Key column in the SQL database. Also, columns marked
as NOT NULL should not contain NULL values, or the data transfer process will fail.

2) Download and following the instructions in the How to Import Visual FoxPro Projects into
FmPro Migrator PDF manual from the FmPro Migrator support web page. Select Help from the
Help menu in FmPro Migrator and your web browser will open this web page.

3) If you are transferring data from Microsoft Access to a SQL database server, then you may use
an importing procedure to import the data from the DBF file(s) into the destination SQL database.
Or you may use FmPro Migrator to transfer data from the DBF files into the destination SQL
database server.

At the completion of these procedures, your data should already be migrated into the destination
SQL database, and the Forms/Reports, Value Lists, Scripts and Relationships should have been
imported into FmPro Migrator.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 20

PHP Conversion Processing

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 21

PHP Conversion Preferences

Configuring Preferences

Before generating PHP scripts, it is important to configure preferences which will be used to
generate the new PHP web application.
Click the Preferences icon in the upper left corner of the PHP Conversion window.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 22

Prefs Storage Locations

Some preference items are stored globally in the FmPro Migrator application Prefs file, and are
used for all PHP Conversion projects. Other preference items are stored in the
MigrationPreferences.dat file within the output directory. The storage location for each prefs item
is noted in the tooltip for each item, as (Project Pref) or (App Pref).

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 23

Application Preference Items

The application preference items include:
1) pChart destination directory relative path. This is the relative pathname used within the
generated scripts to utilize the pChart library scripts. If the pChart directory is copied to the
top-level of the web server htdocs/public_html directory, then the relative path from within the
generated PHP project will be: ../../../pChart. This value will need to be changed if either the
generated project is stored at some other directory level or if the pChart directory is moved or
renamed.
2) The default font used in pChart scripts. The Verdana.ttf font is one of the TrueType fonts
included within the pChart library. There are many sources of TrueType fonts, including MacOS X
and Windows operating system directories, as well as internet websites. If this field is left blank,
the font names embedded within the original FileMaker chart will be used within the pChart code.
If a referenced font is not available within the pChart fonts directory, the text won't be displayed
within the chart.
3) FusionCharts destination directory relative path. This is the relative pathname used within the
generated PHP scripts to utilize the Fusion Charts library scripts.
4) The source directory on the local hard disk for the jqGrid library. If this library is not found,

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 24

FmPro Migrator will skip copying these files into the application directory and Grid objects on
forms won't function. Note: it is always recommended to download even a 30 day trial version of
the jqGrid library from www.trirand.net, in order to create a complete project.

Building Basic Authentication Tables

If the Basic Authentication Type has been selected, two tables (Users, Tokens) will automatically
be added to the MigrationProcess.db3 project file the first time the Convert button is clicked.
These tables will be listed in the list of tables on the Tables tab of the Migration Process window.
Before running the generated application, click on the Create Table button for each table to create
each table in the destination database.

http://www.trirand.net/download.aspx

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 25

Data Access Options

By default, the Data Access option is set to "All", which provides full access to the data in the
database.
Selecting "Read Only" Data Access will disable the Add/Edit/Delete buttons on the navigation
toolbar, and will disable scripted buttons having these features on the converted forms.
Selecting "Edit Only" enables editing of records, but prevents Add/Delete actions.
For disallowed Data Access features, the controller code is also removed from the form controller
php file, preventing a user from accessing the action by manually changing the URL.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 26

Enabling the Navigation Toolbar

Enabling the Navigation Toolbar option, generates code and views to create a form and record
navigation toolbar which will be displayed at the top of each form. All button scripts which include
navigation (First, Last, Previous, Last record navigation, Goto Layout, Switch to Browse Mode,
switch to find Mode) will also be modified to direct the user thru the toolbar controller to insure that
the toolbar is properly displayed.

Form submission for Add, Edit, Query operating modes is done thru clicking the Submit button on
the toolbar, instead of the submit button on the underlying form. There is no Submit button placed
onto the form itself if the navigation toolbar is being used.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 27

4 Navigation Toolbars

These screenshots display toolbars having Data Access = "All" enabled. The navigation toolbar
icons are changed to remove support of features which are not enabled by the Data Access
option.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 28

PHP Conversion - Preflight Check

Preflight Check Dialog

FmPro Migrator performs a couple of checks on the imported TOs and base tables prior to
generating PHP scripts. These checks include:
1) Verification that each base table contains a primary key column. FmPro Migrator looks for the
first table column having Unique and Not Empty validation. If multiple columns have these same
validation properties, the Primary Key column can be set manually for each table by
double-clicking on the column name in the list of fields on the Tables tab of the Migration Process
window.

2) A check is made to insure that none of the TOs in the database have the same name as a
CakePHP reserved word. The following 56 reserved words are checked for a conflict:

view,controller,page,global,__,a,aa,am,config,convertSlash,countdim,debug,e,env,fileExistsInPath,h,ife,low,paths,pr,r,strips

Therefore, it is recommended that developers should import the tables, relationships, value lists
and only 1 layout into FmPro Migrator. Then perform a test conversion so that FmPro Migrator can
perform the pre-flight test on the project. Manually make changes to the FileMaker database,
reimport into FmPro Migrator and test with 1 layout again. Perform this task interactively until the
preflight test passes. Then import the rest of the layouts and scripts into FmPro Migrator in order
to generate the entire PHP web application.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 29

Using Licensed Mode - PHP Conversion

Using the PHP Conversion feature in Demo mode, limits processing tasks to 5 Layouts and
scripts. Entering the license key supplied with FmPro Migrator enables processing the number of
layouts supported by the license key. Using the License Key allows for the processing of an
unlimited number of database files for the purchased Layouts quantity during the duration of the
license key.

PHP Conversion Properties

(1) Enter a name for the new PHP web project which will be created by FmPro Migrator. The
project name will be used as the web directory name which will be created for the project. If the
project folder already exists, it will be re-used, otherwise, it will be created and the php framework
files will be copied into the directory during the conversion.
(2) Select an output directory where the generated project files will be written. A new folder having
the same name as the project will be created within the selected Project Directory folder.
(3) Select the PHP framework name.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 30

Migration Statistics

(1) Clicking the Convert button performs the conversion of the Layouts in the project with the (2)
resulting processing statistics displayed below the license key field.
(3) The Code Conversion Workbench button performs an overall better conversion of the scripts
into PHP by using machine learning models - which is covered in the Code Conversion
Workbench manual.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 31

About the Generated PHP
Web Application

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 32

PHP Conversion - Database Configuration Notes

SQL Server Configuration Notes

1) Install SQL Server Native Client (v11 for SQL Server 2012 - which gets installed automatically
in System32
2) Configure php.ini using:
extension=php_sqlsrv_53_ts.dll
3) Make sure XAMPP 1.77 or higher is used - in order to use the vc9 compiled versions of Native
Client 11, with SQL Server 2012.
4) Restart web server
5) Install newest dob_sqlsrv.php file from gitHub.
6) The database schema should already be created with the name of the login username, and
create a top-level login for the overall server using the login name. These steps should have been
completed during the data conversion process.
7) Change the created tables to be owned by dbo. instead of the login user.

Oracle Configuration Notes

1) If XAMPP is being used on Windows, enable the oci8.dll. The oci8 feature is already included in
XAMPP and only needs to be enabled after installing the Oracle Instant Client.
2) If MAMP or XAMPP is being used on MacOSX, then install the oci8.so:
3) Install the Oracle Instant Client and the associated SDK.
4) Download and install the PHP source files for the version of PHP used in MAMP/XAMP.
5) Using MAMP pathnames, this commands are:
./configure in / Applications/MAMP/bin/php/php5.3.6/include/php
6) /Applications/MAMP/bin/php/php5.3.6/bin/pecl install oci8
7) Add this line to the php.ini file:
extension=oci8.so
8) Set the DYLD_LIBRARY_PATH so that the Oracle Instant Client libraries can be found:
9) Restart the Apache web server.
10) Check the output of phpinfo to verify that oci8 has been loaded.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 33

Using the Generated Web Application

For this manual, an installation of XAMPP or MAMP has been installed, and is running on the local
computer at port# 8888.

Opening the app1 Web Application

Open your web browser to your local web site where the PHP web application has been
generated. Click on the app1 directory, which is the web application directory generated by FmPro
Migrator.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 34

CakePHP Startup Page

If the debug configuration = 2 (which is the default value used by FmPro Migrator), the CakePHP
startup page will be displayed. FmPro Migrator has automatically configured the database
connection, using the Destination Database info entered into the FileMaker tab of FmPro Migrator.
The default salt and cipher-seed values in the core.php file have also been changed to random
values, which are different for each project.

Proceed to enter in "/default" into the web browser to start using the web application.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 35

Debug = 0 Result

If the debug value in the core.php file is configured with a value = 0, you will get an error message
that the "address '/' was not found". Proceed to enter in "/admin" or "/default" into the web browser
to start using the web application. The debug value must be set = 0 to view web pages containing
converted charts.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 36

Default Web Application Page

FmPro Migrator creates a default page file: /app/views/pages/default.ctp. This default page
includes links to controllers created for each Base Table and another set of links created for each
converted Layout in the project.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 37

Assets Layout Controller - index.ctp view

Clicking on the Assets layout controller, opens the index view.
Clicking any one of the Actions buttons, will open the associated view for the selected action.
Query - Enables searching the records of the database.
View - Displays a read-only view of the record in the database.
Edit - Displays an updatable view of the record in the database.
Delete - Prompts with a warning dialog, then deletes the record in the database.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 38

Files Which Are Preserved When Re-Generating the Application

It is likely that the conversion process will be iterative, because cosmetic changes may need to be
made to the FileMaker layouts in order to improve the generated output view files. For this reason,
some globally used web application files are only generated once, and are not overwritten on
subsequent project re-generations.

Database.php

The app/config/database.php file contains the database server configuration information. This
information might be manually changed in order to switch between local test servers, staging
servers or production servers during the development and testing process.

Core.php

The app/config/core.php file contains the application Configure::write('debug', 2); status, which by
default is set = 2. By setting this value to 2, the project displays the green welcome screen
showing that the database connection has been made, and that the salt value has been changed
from its default value.
The debug configuration needs to be changed to 0, in order for charts to be displayed in the web
browser.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 39

Generated Report Files

CakePHP Project Errors.txt

Each database table must have a primary key column named ID. If this criteria is not met, then an
error dialog is displayed and the CakePHP Project Errors.txt file is written to the output directory
with the names of the tables which need to be corrected.

Conversion Summary Results.txt

This file contains a summary of the project stats, including:

?? Layouts Processed in ?? Sec.
?? Scripts Processed (?? lines).
?? Lines of Application Code Generated.

Where ?? symbols are replaced with the actual project stats. This info can be useful for project
estimating purposes.

create_indexes.sql

FmPro Migrator generates the create_indexes.sql file to enable DBAs to generate indexes for
foreign key columns once the data has been transferred from FileMaker Pro to the SQL database
server. Typically, adding these indexes can improve web application performance by 6% - 50%.

Duplicate Objects Report.xls

During the processing of layouts, FmPro Migrator checks for the existence of duplicated layouts
throughout the project. If two layouts have exactly the same contents, the 2nd occurrence of the
layout is marked as a duplicate layout. This report can help you spot accidental duplications
which may have occurred during the capturing of the layouts from FileMaker Pro.
If two layouts have different contents but they have the same name, then the 2nd layout gets
renamed, and listed in the report with the new name.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 40

Missing Table Report.txt

Each layout must be assigned to a table in FileMaker Pro prior to performing a successful
conversion. Without an assigned table, the controller can't be configured to use the correct model,
which causes the Parse error on line 10 displayed in this screenshot.

The report also attempts to locate fields which have missing table name or field name attributes
set correctly.

The following text shows an example of the contents of this report:

Object Name Form Name
address_labels

2 address_labels

Total Layouts = 86
Layouts with Missing Tables = 4
Layout Name

binder__new_business
claims_overview
envelope
policy_subjectivity

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 41

Script to Layout Object Report.txt

The Script to Layout Object Report.txt file lists the usage of each Perform Script script step for all
objects within the layouts of the original FileMaker database. The converted object name,
converted script name and script parameters are listed. Each script is executed as a function call
within the current controller file or AppController. By default, the converted scripts are written into
the app/converted_scripts directory when the web application is created. Therefore these scripts
will generally need to be modified and copied into the AppController, layout controller or a helper
file in order for it to be found.

Layout objects which use the Perform Script step have the script name and parameters written
into the comment for the object, in order to prevent the possibility of errors while running the
converted application.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 42

Script to Layout Usage Report.txt

The Script to Layout Usage Report.txt file lists every layout object which uses each script within the
database. This info provides a quick reference for where the script is used throughout the
application in order to assist the PHP developer concerning the placement of the script in the web
application. For instance, a script which is only used within a single layout controller, should
probably be written into the layout's controller file. A script which is used in many places within the
application could be placed within the AppController or a helper file.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 43

Upgrading Web Application Components

CakePHP Framework Files

To upgrade the version of CakePHP used within the generated web application, download the
latest version of the CakePHP framework and replace the cake directory within the application.

Note: FmPro Migrator currently supports CakePHP 1.3x versions. CakePHP 2.0 represents a
major rewrite, requiring different file naming and other changes throughout the web application. A
command line tool is provided with CakePHP 2.0 which can make many of these changes
automatically. If you use this automated upgrade tool, please provide some feedback to .com
Solutions Inc. regarding the results.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 44

pChart Framework

The pChart Framework can be upgraded by replacing the pChart directory at the top-level of your
htdocs/public_html directory, where FmPro Migrator placed it. Before deleting the old directory,
copy the palettes directory to your new pChart directory. FmPro Migrator uses a customized
version of this directory which contains 20 files named FM_??.color to represent the color
schemes used to create FileMaker 11 compatible charts.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 45

Fusion Charts

No modifications occur to the Fusion Charts directory by FmPro Migrator. At this time, the Fusion
Charts directory needs to be copied manually into your web directory, and by default is expected to
be located at the top level of the web server htdocs/public_html directory.

jquery.js

The app/webroot/js/jquery/jquery.js file written by FmPro Migrator is version 1.5.1. This version
cannot be upgraded to version 1.6 at this time, or the jquery.datePicker.js file will stop working.

jqGrid

FmPro Migrator copies your selected jqGrid/jqSuite directory, and moves files around as
necessary whenever it creates a new project. This process only occurs if a new project directory
needs created. It will be necessary to look thru the webroot directory to duplicate this effort
manually.

Everything Else...

All of the other PHP, JavaScript and .css files should be able to be upgraded without difficulty. For
instance the Adobe Spry framework files and Gritter.js files are unchanged by FmPro Migrator. But
the flash_info.ctp and flash_error.ctp files which use jquery.gritter.js have been customized.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 46

Customizing the Generated Web Application

Changing the Application Root Web Page

Adding a new view file <app name>/app/views/pages/home.ctp will replace the standard
CakePHP diagnostic page which is displayed when debugging is enabled.

Changing the Application Default Page

Changing "default" routing:
The <app name>/app/config/routes.php file contains a default route for the "default" action, listed
as follows:

// Temporary route for initial startup page created by FmPro Migrator - remove for production use
Router::connect('/default', array('controller' => 'pages', 'action' => 'display', 'default'));

This is intended for development, and should probably be commented out for production use.

It is possible to change the FmPro Migrator generated index page by updating or replacing the file:
<app name>/app/views/pages/default.ctp

Gritter Dialogs - Timeout/Sticky Settings

Flash messages are directed to either the flash_error.ctp or flash_info.ctp files located within the
views/elements folder.
By default, the flash_info.ctp file includes a timeout value which causes the window to fade out
after a few seconds.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 47

The flash_error.ctp file has the sticky = true; property set, which means that the dialog stays on the
screen until it is clicked by the user.

Gritter Dialogs - Background Image Color, Size, Transparency

By default, the Gritter dialogs use the app/webroot/img/gritter.png file, but they can be changed to
use the gritter-long.png file if needed. In most cases, the Gritter dialogs expand automatically to
handle more text, so the gritter-long.png file may not be required.
Furthermore, the transparency or color of the background image may also be changed. Or
different dialogs could be configured to use background image files having a different color or
transparency. This functionality could be made dependent upon the business logic of the web
application. Dialogs in one part of an application could have a specific look and other parts of the
app might have a slightly different look serving as a visual reminder to the user concerning either
the type of message or the part of the application which generated the message.

The (1) error_icon.png, (2) info_icon.png or (3) warning_icon.png files could also be changed.
The warning_icon.png file is not currently used by the application, but it could be used in the
design of a new view (i.e. flash_warning.ctp).

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 48

Changing Value List Values

Value lists in the generated PHP web application are defined in a central location, the
app/app_controller.php file. This means that changing the definition of a value list in this one
single location, will affect every menu, checkbox set or radio button set which uses the value list
throughout the entire application - just like editing a value list within the FileMaker Manage Value
Lists dialog.

By default, a custom value list consisting of a single value = 1, will be created with an empty
display value. This makes it possible to use the value list for single checkbox objects, where the
value does not need to be displayed because there is already a separate text label next to the
checkbox.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 49

Web Browser Compatibility

The following notes document cosmetic issues discovered with various web browsers and the
generated PHP web application.

Summary

1) BLOB column images are only displayed within IE8+, Safari, Chrome and FireFox browsers.
2) The positions of the FusionCharts displayed on the Pie Chart Gallery, and Bar Chart Gallery in
the app1 solution are only displayed correctly within Safari on MacOS X. This seems to be an
issue with the layout of the objects on these two forms, since object position issues have not be
noticed anywhere else.
3) Cosmetic issues may occur with FusionCharts fallback javascript charts, except on Safari.
Using pChart generated charts is recommended if charts need to look identical across platforms
and different mobile devices.
4) The jqGrid generated PDF files only seem to display data correctly within the MacOS X Preview
application. The jqGrid does work in IE9 on Windows 7.
5) PNG images having transparency only display correctly with IE7 and higher browsers.
6) pChart generated charts always work perfectly across all browsers and the charts are always
displayed in the correct position on the web page.
7) Playing of the Beep sound only works on Safari on IOS when displaying a player object.
8) ExtJS 4 Grid objects work correctly across all tested browsers shown here. To scroll the list of
records within the ExtJS grid on touch devices (iPhone/iPad etc), use a two finger swipe.
9) The CCS implemented tooltips, don't display a drop shadow on IE browsers, but otherwise the
tooltips work perfectly.

In general, all of the commonly used web application features like menus, navigation toolbar, tab
controls, colors, vector graphic objects, object positions work perfectly going all they way back to
IE6 on Windows XP.

IE6 on Windows XP [Deprecated Browser]

1) Images within BLOB columns are not displayed.
2) The CakePHP index page buttons are displayed as links, instead of being styled as buttons.
3) pChart Charts - all charts are displayed perfectly.
4) FusionCharts - Without FlashPlayer installed - Display with cosmetic issues with chart
titles/legends. All charts were displayed, but were displayed at the wrong position on the page.
Charts were displayed staggered down the page and offset to the right - but only on the test chart
web pages.
5) FusionCharts - With Flash Player X installed - Display much better. All charts were displayed,
but were displayed at the wrong position on the page. Charts were displayed staggered down the
page and offset to the right - but only on the test chart web pages. Tab controls with embedded
tab controls work perfectly.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 50

6) Core2CRM converted solution - No BLOB columns displayed, vector graphics objects
displayed perfectly, jqGrid portals displayed correctly. Export jqGrid to PDF - displayed the title of
the exported data using Adobe Reader 10, but no actual data was displayed.
7) Export jqGrid to PDF - displayed the title of the exported data using Adobe Reader 10, but no
actual data was displayed.
8) INSDB converted solution - Takes 30 seconds to 2 minutes to display all 6 portals when
advancing between records, depending upon the performance of the test computer. PNG images
having transparency are not displayed correctly, and show a grey background where they should
be transparent.
9) Beep sound plays correctly, Toolbar displays and operates correctly [though the Add/Update
button is cropped by a few pixels].
10) JavaScript Print dialog doesn't work, and displays an error.
11) Open URL works correctly for image link objects and JavaScript implementation (as
implemented via button, vector graphics objects).
[Deprecated Browser - No new features are tested with IE6]

IE7 on Windows XP

1) Images within BLOB columns are not displayed.
2) The CakePHP index page buttons are displayed correctly as buttons.
3) pChart Charts - all charts are displayed perfectly.
4) FusionCharts - Without FlashPlayer installed - Display with cosmetic issues with chart
titles/legends. But in general, most chart elements displayed correctly. All charts were displayed,
but were displayed at the wrong position on the page. Charts were displayed staggered down the
page and offset to the right - but only on the test chart web pages.
5) Core2CRM converted solution - No BLOB columns displayed, vector graphics objects
displayed perfectly, jqGrid portals displayed correctly. Takes only a few seconds to advance
between records. Tab controls with embedded tab controls work perfectly.
6) INSDB converted solution - Takes only a few seconds to advance between records, displaying
all 6 portals and data. PNG images with transparency work perfectly.
7) Beep sound plays correctly, Toolbar displays and operates correctly [though the Add/Update
button is cropped by a few pixels].
8) JavaScript Print dialog doesn't work, and displays an error.
9) Open URL works via JavaScript to open the web page under the Navigation Toolbar frame (as
implemented via button, vector graphics objects). Open URL as a link using a button object - does
not work.

IE8 on Windows XP

1) Images within BLOB columns are displayed perfectly.
2) The CakePHP index page buttons are displayed correctly as buttons.
3) pChart Charts - all charts are displayed perfectly.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 51

4) FusionCharts - With FlashPlayer Installed - Some cosmetic issues with display of data fields
and the positions of the charts on the page, otherwise the charts are displayed correctly.
5) Core2CRM converted solution - All features work perfectly, including tab controls within tab
controls, jquery datepicker, jqGrid.
6) INSDB converted solution - Takes only a few seconds to advance between records, displaying
all 6 portals and data. PNG images with transparency work perfectly.
7) Export jqGrid to PDF - displayed the title of the exported data using Adobe Reader 10, but no
actual data was displayed.
8) JavaScript print dialog works, Beep sound plays correctly, Navigation Toolbar displays and
works correctly.
9) Open URL works correctly for image link objects and JavaScript implementation (as
implemented via button, vector graphics objects).

IE9 on Windows 7

1) Images within BLOB columns are displayed perfectly.
2) The CakePHP index page buttons are displayed correctly as buttons.
3) pChart Charts - all charts are displayed perfectly.
4) FusionCharts - Without FlashPlayer - Some cosmetic issues with display of data fields and the
positions of the charts on the page, otherwise the charts are displayed correctly.
5) jqGrid - Does not display at all in any solution. This is not a reproducible problem by the jqGrid
developer, so this may be a machine specific issue.
6) Core2CRM converted solution - All features work perfectly, including tab controls within tab
controls, jquery datepicker, except for the jqGrid.
7) JavaScript print dialog works, Beep sound plays correctly, Navigation Toolbar displays and
works correctly.
8) Open URL works correctly for image objects and JavaScript implementation (as implemented
via button, vector graphics objects).

Safari 5 - Windows

1) Images within BLOB columns are displayed perfectly.
2) The CakePHP index page buttons are displayed correctly as buttons.
3) pChart Charts - all charts are displayed perfectly.
4) FusionCharts - With FlashPlayer Installed - Some cosmetic issues with display of data fields
and the positions of the charts on the page, otherwise the charts are displayed correctly.
5) Core2CRM converted solution - All features work perfectly, including tab controls within tab
controls, jquery datepicker, jqGrid.
6) INSDB converted solution - Takes only a few seconds to advance between records, displaying
all 6 portals and data. PNG images with transparency work perfectly.
7) Beep sound does not play.
8) Toolbar displays and operates correctly, JavaScript Print dialog works.
9) Open URL works via JavaScript to open the web page under the Navigation Toolbar frame (as

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 52

implemented via button, vector graphics objects). Open URL as a link using an image object -
works correctly and opens in a new window.

Safari 5 on MacOS X

All features displayed correctly, all charts displayed in the correct position.

Safari 5 on IOS 5

All features work correctly - except playing Beep sound.
1) Beep sound does not play, unless the HTML5 media player object is displayed for the user to
click.
2) To scroll the list of records within the ExtJS grid on touch devices (iPhone/iPad etc), use a two
finger swipe.

FireFox - MacOS X

All features work correctly, except FusionCharts are displayed in the wrong positions on the web
page.

Google Chrome on MacOS X

All features work correctly.
1) JavaScript print dialog works, Beep sound plays correctly, Navigation Toolbar displays and
works correctly.
2) Open URL works correctly for image link objects and JavaScript implementation (as
implemented via button, vector graphics objects).

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 53

Layout Object Script Steps to JavaScript/PHP Conversion

14 Commonly Used Script Steps

Virtually every object on a FileMaker layout can have an assigned script step, including: button,
image, text label, rectangle, rounded rectangle, circle/oval and line objects. Within the converted
web application these objects include PHP and JavaScript button scripting to implement the
original functionality.

In addition to object scripting features, two report files are generated to provide script and object
dependency reporting for each layout and script within the converted solution.

Supported layout object script steps include:
• Enter Find Mode - Redirects the user to the Query form for the same layout.

• Enter Browse Mode - Redirects the user to the View form for the same layout, using the record
stored within the $_SESSION['current_record'] variable for the current model.

• New Record - Redirects the user to the Add form for the same layout.

• Delete Record - Prompts for confirmation, then deletes the current record if the user clicks Ok.

• Show All Records - Clears the $_SESSION['foundset'] array for the current model.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 54

• Beep - Uses Javascript code to download and play the included beep1.wav sound file. The
implementation of this feature also makes it possible to specify additional sound files for different
tasks within the web application.
Note: The beep1.wav or beep1.mp3 file does not play automatically on IOS devices (iPad/iPhone),
IE8, or IE9, but it can be played manually by displaying the audio controller using hidden="false" in
the document.ready JavaScript code.

• Open URL - Opens the specified web page URL in a new browser window.

• Goto Layout - Opens the View form for the specified converted layout, and opens the most
recently visited record. If a form using this model has not previously been visited, the first record in
the model will be displayed.

• Perform Script - Executes the specified converted script as a function call within the current
controller file or AppController.
By default, the converted scripts are written into the app/converted_scripts directory when the web
application is created. Therefore these scripts will generally need to be modified and copied into
the AppController, layout controller or a helper file in order for it to be executed properly.

Layout objects which use the Perform Script step have the script name and parameters written
into the comment for the object, in order to prevent the possibility of errors while running the
converted application. These parameters will need to be edited and passed to the function which
is being called.
<!-- Button: button22_btn Script: go_to_form_layout("Parameter1" & ¶ & "Parameter2" &¶ &
"Parameter3") -->

The Script to Layout Usage Report.txt file lists every layout object having a Perform Script step
within the database. This info provides a quick reference for where the script is used throughout
the application in order to assist the PHP developer regarding the placement of the script in the
web application. For instance, a script which is only used within a single layout controller, should
probably be written into the layout's controller file. A script which is used in many places within the
application could be placed within the AppController or a helper file.

• Print - Opens the web browser print dialog to print the currently displayed form.

Record navigation script steps include: Goto Record/Request [First], Goto Record/Request [Last],
Goto Record/Request [Previous], Goto Record/Request [Next].

JavaScript Compatibility Notes & Image Objects

Many of the supported script steps are implemented with JavaScript code implemented within the
Document Ready function at the top of each view.ctp, add.ctp, edit.ctp view file.
The script steps listed below, are implemented as direct links implemented via CakePHP for

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 55

graphic image objects:
Enter Find Mode
Enter Browse Mode
New Record
Show All Records
Open URL
Goto Layout
Goto Record/Request [First], Goto Record/Request [Last], Goto Record/Request [Previous], Goto
Record/Request [Next]

If you want to achieve better cross-platform, cross-browser compatibility, you may want to
implement your scripted objects on FileMaker layouts by using image objects instead of using
button, text or vector graphic objects which will be implemented purely in JavaScript code.
The above listed script steps will also work if JavaScript as been disabled within the web
browser, if the script has been attached to an image object on the layout.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 56

Using the ExtJS Grid

FmPro Migrator Platinum Edition 6.68 introduces the use of the ExtJS 4 grid object, as an
alternative to using the jqGrid object for the PHP web implementation of FileMaker portal objects.
The ExtJS grid offers full compatibility with any database server which is compatible with
CakePHP (including FileMaker Server Advanced using an ODBC connection).

Some advantages to using the ExtJS grid include:
1) Only one connection is made to the database for the CakePHP application overall, no
additional separate connection gets made to the SQL database server. This reduces
configuration issues.
2) No URL dependencies. The ExtJS grid code reads the URL differently, so that it is not sensitive
the application's URL prefix.
3) [Future Implementation] - The ExtJS grid offers the potential to handle relationships of any level
of complexity, for which CakePHP models have been created. All related records are already
available in memory when the parent record is displayed. At the present time, only fields within the
Portal's TO are supported, but this limitation is expected to be resolved with a future release. The
jqGrid has problems parsing complex joins between tables, and may fail when attempting
multi-table joins. The ExtJS grid is intended to make it possible to avoid this limitation.

Downloading ExtJS

The ExtJS JavaScript framework is available from the Sencha website. ExtJS is dual licensed via
open source GPL and commercial licensing, licensed on a per-developer basis. If you are
developing a commercial website as a consulting, your customer also needs to purchase a
license once you deliver the web application. Your customer does not have to buy support, only a
license.
Note: ExtJS 4.11 is the minimum version supported by FmPro Migrator. Earlier versions of ExtJS
may display the grid in the wrong location on the web page, or might not display any titles or data
within the grid.

Once you have downloaded and unzipped ExtJS, store the folder in a convenient location on your
hard drive, not the htdocs directory. FmPro Migrator will take care of copying ExtJS to your local
htdocs or public_html directory. FmPro Migrator will only copy these files the first time it builds the
web application directory. If the ExtJS grid was not selected as the type of grid to used the first
time the web application directory was created by FmPro Migrator, you can:
1) Delete the web application directory, FmPro Migrator will re-build it and copy all of the
necessary files.
2) Manually copy the ExtJS folder directory into your htdocs directory and rename it as: extjs.

http://www.sencha.com/

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 57

Pre-Conversion Portal Size Consideration

Web based grid objects should not generally be created with a vertical size of less than 100
pixels/points. This is due to the requirement for the grid object to display a row of column titles as
well as a row of control icons (Add/Delete icons). Therefore any FileMaker portals which are
smaller than 100 pixels/points tall, should be increased in height for proper display in the
generated web application. It is easier to make these types of changes within FileMaker than it is
to modify the generated files, especially if there are other objects which need to be moved at the
same time.

Since it is not practical for FmPro Migrator to automatically remove the unneeded text labels above
portals, these should be removed manually before converting the layouts. By default, FmPro
Migrator will use the original field name as the title for each grid row. The column header text can
be easily edited within column definition section of the generated ExtJS grid files.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 58

Selecting ExtJS in Preferences

Click the preferences icon on the main PHP Conversion window. (1) Select Ext JS from the Grid
Type menu. (2) Click the browse button then select the unzipped ExtJS directory on your hard
drive. FmPro Migrator will automatically copy the ExtJS directory the first time you generate a
project. The ExtJS folder will be named extjs at the top-level of your web server directory, so that it
can be used by all of your applications. You will need to copy this extjs folder to the same relative
location on your production web server.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 59

ExtJS Web Folder Location

This screenshot shows an example of an htdocs directory having multiple CakePHP web
applications, which are all sharing one copy of extjs, FusionCharts and pChart software.

ExtJS Grid File Locations

The generated ExtJS grid JavaScript files are stored within the webroot/js folder. There are two .js
files created for each portal on a layout, one file for the read-only view.ctp view and another file for
the editable edit.ctp view file. These files are named using the format:

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 60

 <layout name><portal name>_view.js
or
 <layout name><portal name>_edit.js

ExtJS Grid - View Form Usage

Users can sort the rows of the grid by selecting the drop down menu within the title of any column
of the grid.
Users may also reduce the number of columns in the grid by selecting the Columns item from the
drop down menu, then unchecking any columns which they don't want to have displayed. This
change is not persistent.

ExtJS Grid - Edit Usage

Grid objects generated for edit.ctp forms, include a row editing capability. To edit a row of the grid,
double-click on the row. Edit any fields of the row, then click the Update or Cancel buttons.
Notice that the grid object contains a row of control icons above the column titles. The user many
click on a row, then delete the row, or click on the "+" button to add a new row.

ExtJS Grid Limitations

1) At the present time, the PHP code which copies array data into JSON format for use by the
ExtJS grid, only supports fields within the portal's relationship TO. A future release of FmPro
Migrator will be required in order to remove this limitation.
2) Date fields must have a minimum date of 1/1/1970.
3) On touch devices, a two finger swipe is required in order to scroll thru related records in the

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 61

grid. Officially, Sencha states that ExtJS is not supported on touch devices.
4) In order to edit an existing row, it is necessary to double-click on the row in the web browser. It
may not be possible to do this on a touch device. Selecting a row for deletion does work, and
adding a row with the green "+" button also works on touch devices.
5) Container fields, checkbox, radio button, vector graphic objects, image objects and push button
objects from the original FileMaker portal will not be converted into equivalent objects on either the
ExtJS or jqGrid objects.
6) The Ext JS grid may be adversely affected by enabling the Google PageSpeed feature for your
website. Having Google PageSpeed enabled may cause the Ext JS grid to display only for the first
record, and then may disappear when navigating to other records in your application.

https://developers.google.com/speed/pagespeed/

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 62

Using Save Records as PDF

The Save Records as PDF script step attached to a button will be directly converted into PHP
code. The generated PHP code will use the html2ps package. Having a folder named html2ps
located in the same folder selected as your ExtJS source directory, will enable FmPro Migrator to
automatically copy this folder into the CakePHP /app/vendors folder during the initial project
creation. The check for this source directory only occurs once, when the CakePHP application is
first created in your htdocs directory.
A modified version of this html2ps directory suitable for use with CakePHP has been uploaded to
the PHP Conversion web page.

app_controller save_records_as_pdf function

All web applications include the save_records_as_pdf function within the app_controller.php file.
This function can be called from any part of the application. This function supports each of the
FileMaker features: CurrentRecord, RecordsBeingBrowsed and BlankRecord. This function
displays the specified form and converts it to Postscript for the creation of the PDF file. This
process is memory and CPU intensive, and generally requires configuring at least 128Mb of RAM
for PHP within your php.ini file. Generating multi-page PDF files may take 750Mb of RAM.

Advantages of Using html2ps for PDF Creation

The code shown here, is the form controller code which calls the app_controller
save_records_as_pdf function.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 63

1) The converted layouts of your FileMaker database are already converted into view files, which
are immediately usable for generating PDF files. No additional development is required.
2) A developer can easily create a PDF suitable form by copying the existing view.ctp file, and
manually removing unneeded objects like the Save as PDF button used to trigger the script. The
PDF specific view file could be named pdfview.ctp, which can be specified in the calling function
within the view controller.
3) By default, the PDF is downloaded to the web browser and opened or saved as a separate file.
This parameter can be changed to "browser" to make the PDF display inline within the web
browser window.
4) If you need to generate PDF files from within a script, instead of being trigger by a user clicking
a button on a layout, just call the save_records_as_pdf() function from within your existing script.

Disadvantages of Using html2ps for PDF Creation

1) The HTML to Postscript conversion process requires noticeable time, memory and CPU
resources. This process is not suitable for generating large quantities of PDF files. It generally
takes about 5 seconds to generate each PDF page.
2) JavaScript objects like the raphael.js vector graphic objects are not rendered.
3) PNG images containing an Alpha channel will display with a black background.
4) PDF pages by default are rendered about 18% larger than the original web form. Though efforts
to render at a different size have not yet been successful.
5) Setting the Landscape true/false configuration property has not yet been able to render the PDF
in portrait mode.

An Alternative to Using html2ps

A high performance PDF library named tcpdf is also available as an open source project. The
tcpdf PHP class does require manually writing PHP code to create every object which needs to
appear within the PDF file.

http://www.tcpdf.org/

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 64

PHP Conversion - Manual
Tasks

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 65

Manual Tasks - Login & Role Based Security

Selecting the Basic Authentication Type in the PHP Conversion preferences window, will generate
login and role based security code within the PHP web application. This technique can be used to
implement a straightforward, low overhead authentication system, without the complexity of the
ACL authentication method.

Authentication Preferences Setting

Selecting the Basic Authentication Type on the Preferences window, adds login and role based
security settings to the generated PHP application.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 66

Add User Link - Default Page

On the Default application page, click on the Add User link to add a new user account.
Note: The first user account created will automatically be granted the [Full Access] role within the
web application.
To assign a role to any additional accounts, click on the Admin - List/Edit/Delete/Query Users link.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 67

User Accounts List

Click the Admin - List/Edit/Delete/Query link to update information for any user account. You must
be logged in with an account having the [Full Access] role in order to see this list of user accounts
or make any changes to the accounts in the list.
Note: You cannot delete the account which is currently logged in.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 68

Editing a User Account

Notes can be added to an account, the Role can be changed, and an account can be marked as
Inactive, which prevents the user from logging in.

Changing passwords is reserved for the account action. Users do not have to have the [Full
Access] role in order to be able to change their own password, but they do have to be logged in.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 69

Authentication Code - app_controller.php

By default, the authentication code will be commented within the app_controller.php file. The code
is generated this way in order to give the developer the opportunity to add login accounts to the
users table. After you have added at least one user login account, uncomment this code in the
AppController to enable role based security throughout your web application.

Note1: There will be another var $components statement a few lines below the AppController
class declaration statement. It will look like this:

public $components = array('Session');
And this line will also need commented when you uncomment the code shown here, because
you cannot re-declare the same $components twice.

Note2: If you don't have any accounts with the [Read-Only] or [Edit-Only] roles, you may leave the
two CASE statement blocks commented, which will default to a true returned value. Any tests you
add to this SWITCH statement will be evaluated for every action used within the application.

Changing the Default Email Address in Recover Action

The email From: address should be changed within the recover() action of the
users_controller.php file. The email template files within: app/views/elements/email/text directory
may also need customization.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 70

Adding Additional Layout Controller Authentication

Within each converted layout controller file, you may add additional authentication tests. This
example code prevents access to the converted layout forms for any accounts having the Manager
role.
Additional CASE blocks may be added to prevent access to specific actions based upon the
user's role. The SWITCH statement within the AppController provides an example of code which
can be copied and modified.

Reset Password Feature - Step 1 - Click Forgot Password Button

The login screen includes a "Forgot Password?" button. Clicking this button takes the user to the
Recover Password form.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 71

Reset Password Feature - Step 2 - Enter Email

Clicking on the Rest Password link, sends an email to the currently logged in user's email
account with instructions for how to reset the password.
A temporary password is entered into the tokens table, enabling the user to log in and reset their
password. This process is necessary, because the password is never stored in cleartext
anywhere in the database. Even an administrator does not know the cleartext version of the
password. Only the encrypted password is stored in the database.

Note1: If a user is currently logged in, the user will be redirected to the account action to change
their existing password. If the user is already logged in, they don't need to reset their account
because they already know their password or they would not be logged in. This is why the "Forgot
Password?" button is located on the login form.

Step #2 - The user enters their email address into the recover view, then clicks on the Recover
button.
A record will be entered into the tokens table of the database. This is why email addresses need
to be unique among all of the user accounts, because the email address is the only way to
identify the user.

Reset Password - Token Table Record

The token will be used for temporary login verification within the verify action.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 72

Reset Password Feature - Step 3 - Click Verify Link

The user clicks the verify link, which passes the token to the verify action.

Reset Password Feature - Step 3 - Password Changed View

The user is also sent an email with the same temporary password info which is displayed on the
verify view page.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 73

Reset Password Feature - Step 4 - Click Email Link

The user may also click on the login link within the email.

Reset Password - Step 5 - Login

The user needs to login using the temporary password.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 74

Reset Password - Step 6 - Change Password

Once the user has logged in with their temporary password, they will then need to change the
password.
On the account view, the user needs to enter the temporary password again within the Old
password field. Then they need to enter their new password twice.
The user will be redirected to the Login screen afterwards, but they are already logged in so they
don't really have to log in once again.

Login Redirect

Once a user logs in, they are automatically redirected to the page they were previously viewing or
attempting to view.
In some cases, this behavior can potentially lead to confusion if the user changed their password,
and will then be automatically redirected to the login view. Once they log in, they will be redirected
back to the Change Password view.
This behavior can be changed in the login action code.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 75

Summary of Built-in Roles

There are 4 built-in roles listed in the Roles menu of the admin_edit.ctp file. Any number of
additional roles may be added to this menu.
The default roles have names matching built-in FileMaker Privilege Sets. These default roles are:

[Full Access] - This is the role which is required for administration of the User accounts. It is also
the role required in order to view/edit records in the Base Table Controllers list shown on the
default.ctp home page. The first user account created is automatically granted the [Full Access]
role so that it can be used to administer the user accounts. No role is automatically assigned to
any other account used by the web application. Roles for additional accounts must be manually
assigned to the additional accounts.

[Edit Only] - Edit, View, Query, QueryList actions allowed, no access to Delete, Add actions. No
administrative access.

[Read-Only Access] - View, Index, Query, QueryList actions allowed, no access to Edit, Delete,
Add actions. No administrative access.

[Data Entry Only] - Index, View, Index, Edit, Delete, Add, Query, QueryList actions allowed. No
administrative access.

Note: For each of these roles, any new actions added to the web application will automatically
allowed unless the AppController or layout controller isAuthorized() function is manually edited.

Sharing Logins Between Applications

If you need to share logins between multiple CakePHP projects, you will need to copy the
app/config/core.php file to each application. The Security.cipherSeed and Security.salt values
within the core.php file are used to encrypt the password text entered by users of the applications.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 76

Manual Tasks - Model Files

There are a few manual changes which may be required to the generated model files in order to
duplicate the functionality of the original FileMaker database. Manual changes to model files do
not get overwritten when the project is re-generated.

A FileMaker Example Relationship

In this FileMaker database multi-predicate relationship, the first predicate defines the relationship
between the records in the two tables, and this info is correctly converted into CakePHP
hasMany/belongsTo array entries in the model files.

But the 2nd predicate requires manual modification in order to implement the same functionality.
It isn't possible for FmPro Migrator to know exactly what values are contained within the
Clients::Logic_1_field global field, because the values may change at any time. But the developer
of the FileMaker Pro database knows that the Logic_1_field is really a static value containing the
value 1.

Generated client.php Model hasMany Definition

By default, the conditions property is set to null.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 77

Client to Horse - Condition Array Changes

Adding the conditions array entry 'Horse.Inactive <> 1' duplicates the functionality of the original
relationship. The InactiveHorseToClient hasMany entry has also been manually updated to reflect
that only records where 'Horse.Inactive = 1' should be retrieved from the database.

Some performance improvements can occur by reducing the number of table joins done in the
database by using conditions instead of joins between tables. These changes could involve
using conditions to replace the use of global field joins, and using globally defined variables,
which would be set within controller code.

Validation Code - Calculation Formulas

It is not practical to parse and convert FileMaker calculation formulas into PHP code. This is a task
which needs to be done manually. Therefore validation tests involving calculations require
manual changes to duplicate the same functionality. Calculation formula validations are
commented by default in the generated model files.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 78

Validation Text Messages

Validation message text is automatically used within the generated model files. However, some
consideration needs to be made concerning whether the error message text provides enough
explanation concerning which field is failing the validation test.

Summary and Calculated Fields

Summary and Calculated fields will need to be implemented manually within the model file in
order to have the same functionally as the original database.

As an alternative to calculating Summary and Unstored Calculation values within the PHP web
application, these values can be implemented with SQL view files in order to improve
performance. FmPro Migrator includes a button above the list of tables on the Tables tab of the
Migration Process window which generates SQL view files. These files include the original
FileMaker calculation code along with a SQL version of the code suitable for modification by a
SQL database DBA.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 79

Using a SQL View in a Model file

We can modify 2 lines of code within any Model file to use the SQL view for reading data and to
use the underlying database table for writing data.

Missing Relationships

FileMaker Pro has the ability to infer a relationship between two tables even if a direct relationship
does not exist. FmPro Migrator cannot figure out these inferred relationships, therefore they need
to be created manually within either the Model or Controller files.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 80

Manual Tasks - Too Many Relationships

Too Many Relationships

By default, all related tables are referenced in each Model file generated by FmPro Migrator.
However, allowing CakePHP to calculate all of these relationships could be too time consuming.
The result of this situation is that the application may timeout before completing the SQL
database queries, or may display an database error about too many table joins.

These errors will occur on table form which uses the problematic Model files.

Simplifying Relationship Calculations

Therefore the solution to this problem is to simplify the relationships which need calculated. It will
be necessary to only calculate related values when they are needed. These changes are
generally made in 2 locations:

AppController.php
ToolbarsController.php
<Form>Controller.php

AppController.php Changes

1) The list of Models within the AppController.php file should be commented manually. Field
based value lists, will automatically load only the Model they require.
2) Within the makequery() function, the follow lines of code need to be added in order to import the

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 81

models for performing searches upon the data. These additional lines of code go between the
$_SESSION[$model]['cond']=$conditions_of_search; and $resultset =
$Model->find('all',array(... lines of code.

App::import('Controller', $controller);
$controllerClass=$controller."Controller";
$cntrl = new $controllerClass;
$binds=$cntrl->binds;
$Model->bindModel($binds);

Toolbars Controller Changes

There are 3 changes required within the ToolbarsController.php file [if you are using the
Navigation toolbar feature].
1) The first change, is the addition of the same model importing code within the AddFindRecord()
function.

App::import('Controller', $controller);
$controllerClass=$controller."Controller";
$cntrl = new $controllerClass;
$binds=$cntrl->binds;
$Model->bindModel($binds);

2) Replace the following code within the AddFindRecord() function:
 {

$pos = strpos($key, $exams);
if($pos === false)
{
}
else
{
array_push($setarray,$key);
}

}

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 82

with this new code:

 foreach($modelNames as $exams){
 $pos = strpos($key, $exams);
 if($pos === false)
 {
 }
 else
 {
 array_push($setarray,$key);
 break;
 }
 }
 }

3) Replace the following code within the AddFindRecord() function:
$vb = str_replace($toreplc,"",$k);
$last = str_replace("]","",$vb);
array_push($feindKey,$last);
array_push($findVal,$v);

with this new code [This is a new foreeach block within the existing foreach block:

foreach($modelNames as $exams){
if(strpos($k,$exams) >0)
{

$toreplc = "data[".$exams."]"."[";
$vb = str_replace($toreplc,"",$k);
$last = str_replace("]","",$vb);
$last=$exams.".".$last;
array_push($feindKey,$last);
array_push($findVal,$v);
break;

}
}

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 83

<Form>Controller.php Changes

Within the web application, it is possible that there could be dozens of relationships within a
single Model file. However, there might only be a couple of relationships actually used on each
individual form. Therefore it many be necessary to import only the required model files and
relationships actually used on the form to improve performance.

Within the controller file for each form:
1) Add the $useModels and $binds arrays at the top of the controller file.
This code will look like the code in the Model files for hasMany/belongsTo relationship definitions.
And example is shown below:

public $useModels = array('TblAsset','TblMaintenanceRecord');
public $binds = array(
 'hasMany'=>array(

 'TblMaintenanceRecord'=>array(
 'className'=>'TblMaintenanceRecord',
 'foreignKey'=>'asset_id',
 'conditions'=>null,
 'dependent'=>true,
 'fields'=>null
)
);

2) Add a call to bind the models:
$this->TblAsset->bindModel($this->binds);

This line of code needs to be added just before the $fields_list variable definition within the view(),
and edit() actions of the controller.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 84

3) Comment out the hasMany/belongsTo relationship definitions within each of the Model files.

Note: Make sure to include relationships used for Portals as well as regular fields. Looking at the
$fields_list variable contents will show you all of the Models used for fields displayed on the form.
Near the bottom of each controller file, you will find JSON data conversion code for each portal,
which will reference the related Model.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 85

Manual Tasks - View Files

Text Object Size

FmPro Migrator builds view files using the object coordinates from the original layout. In general,
this process works very well. But sometimes, it may be necessary to change the size or position
of the objects for use in web browsers.

Text labels will usually need to be lengthened in order to display properly in various web
browsers. In this screenshot, the "Client - Financial Info" has wrapped down to the next line.

The "Invoices & Credit Memos (Unpaid) text also should be lengthened so that it does not word
wrap.

If the text label is Left Aligned, then lengthen the label by moving the right side border longer by
about 20%, for right aligned labels, adjust the left border.

These types of cosmetic changes should be made in the original FileMaker layout, then the layout
should be copied back into FmPro Migrator and the project should be regenerated.

If multiple text styles, sizes, attributes are needed within the same text block, break up the text
block into multiple individual text labels.

Object Layering

It isn't possible to export information about the front to back layering of the objects on the
FileMaker layout. FmPro Migrator defines z-index CSS values for each object in order to attempt to
resolve this issue. Objects such as vector graphics objects and images are put at the lowest level
of the HTML canvas. Text labels, fields and portals (Grids) are placed above the graphics objects.
Some fine tuning of this layering may be necessary.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 86

Multi-Segment Image Objects

On some FileMaker layouts, multiple individual images may have been grouped together to form
one single image. In most cases, these images will convert correctly into web forms. But
sometimes there will be a small white hairline between the two images. If this situation occurs,
then re-create the image as one single image, paste it onto the FileMaker layout, copy the layout
into FmPro Migrator and re-generate the project files.

It is generally a good idea to quickly convert an entire project, and then carefully examine the
generated web forms afterwards in order to determine if this problem will occur.

Adding FileMaker Layout Part Background Colors in CakePHP View Files

It is not possible to gather information about the layout part positions or background colors from
the FileMaker layout information placed onto the clipboard. But the generated CakePHP view files
can be modified to accomplish the same result.

1) Add a <body bgcolor > tag just below the </style> tag.
2) Add the closing </body> tag as the last line of the view file after the <?php echo
$this->Form->end();?> PHP code.

Make this change to the view.ctp, edit.ctp, add.ctp, query.ctp files.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 87

FileMaker 13 Popover Objects

A FileMaker 13 popover can include the complexity of an entire layout. Therefore the best way to
handle this type of object when performing a conversion is to copy the popover contents into a
new FileMaker layout. It is probably best to give the new layout a name referencing the original
layout for documentation purposes: (example: Layout1_popover1)

Once the project has been converted, open the popover by adding button code to the popover
triggering button on the original forms (view.ctp, edit.ctp, query.ctp, add.ctp files).

This code might look like the following examples:

var me = $('#button107_btn');
var title = $('#button107_btn').attr("title");

me.showBalloon({
 position: 'bottom',
 tipSize: 21,
 minLifetime: 0,
 contents: 'Loading....',

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 88

 title: title,
 url: "<?php echo

'http://'.$_SERVER['SERVER_NAME'].":".$_SERVER['SERVER_PORT'].$this->webroot.'Popover2/popoverview2/'.$_SESSION

 css: {
 border: 'solid 10px #aaa',
 padding: '10px',
 fontSize: '100%',
 fontWeight: 'bold',
 lineHeight: '3',
 backgroundColor: '#fff',
 width: '800px',
 opacity: "1"
 }
}).toggle(function() {me.hideBalloon(); }, function() { me.showBalloon(); });

me.trigger('click');

query Popover CSS

In addition to the button code shown above, there is also CSS code added to the view file to
support the Popover.
Here is an example of that CSS code:

<?php echo $this->Html->css(array('smoothness/jquery-ui-1.10.0.custom.css'));?>

<style>
.ui-content .ui-dialog-titlebar
{
 display:none;
}
.ui-widget-content {
 border: 10px solid #C0C0C0;
}
.ui-dialog{

padding:10px;
color: #fff;
-webkit-border-radius: 5px;
-moz-border-radius: 5px;
border-radius: 5px;
width:190px;

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 89

margin:30px;
}
.ui-dialog:before {

content: ' ';
height: 0;
position: absolute;
width: 0;
left:590px;
top:145px;
border: 10px solid transparent;
border-left-color: #C0C0C0;

}
</style>

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 90

Manual Tasks - Controller Files and Converted PHP Scripts

Converted Scripts

FmPro Migrator converts FileMaker scripts into executable code and Custom Functions into
commented PHP code. These files are written into a folder named converted_scripts at the top
level of the application.

These scripts are intended as a starting point for further development of the PHP code. Within
scripts which start with a Goto Layout script step, FmPro Migrator will use the specified TO Name
assigned to the layout as the model name within the following statements. Otherwise, the text
"<Missing Model>" will be written out to the generated script to indicate that FmPro Migrator cannot
determine which Model to use within the PHP code.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 91

Button Code

FmPro Migrator automatically converts Goto Record First, Previous, Next, Last script steps used
for record navigation. There is controller code generated for the edit, view actions to set the
$page[] array with the correct record primary key to use when redirecting the user after a
navigation button is clicked.

The are a variety of additional layout button script steps which are automatically converted. Please
see the section of this manual titled: "Layout Object Script Steps to JavaScript/PHP Conversion"
for more details.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 92

Manual Tasks - pChart Code

Rendering pChart Charts to Image Files

By default, FmPro Migrator renders pChart generated charts directly to the web browser. This
behavior can be changed by changing the Stroke() function to Render() on the last line of the
pChart controller code.

Using the Render() function will render the file to the top level of the webroot/img directory.
Rendered chart PNG images can then be displayed by simply creating a static HTML page linking
to the static image files. This technique can be used to create charts for high traffic web sites
without requiring the user to wait for the chart to be created by the PHP code, thus improving the
perceived performance of the web application and reducing the computational load on the web
server.

The files don't have to be rendered into the webroot/img directory. The pathname could be
changed to reference any directory which is accessible to the web server.

pChart FoundSet Usage

Within FileMaker Pro, the Y-Series database column for a chart will often be a Summary field.
Since SQL database servers work differently from FileMaker Pro, the Summary & Grouping
features are implemented within the PHP chart creation code. FmPro Migrator automatically
retrieves the Tablename::Fieldname referenced within the Summary field and uses the source
field as the Y-series field.

If the source of the Y-Series data was the Members::Company_Count column (a Summary field),
then the column name would be changed to use the Members::Company column in the PHP
code. Actually to be more accurate, the column name will use the CakePHP Model name followed
by the column name (Member.company). The model name will be based upon the original TO
Name on the RelationshipGraph.

The generated pChart scripts don't make use of the foundset Session array. So either the
foundset record ID array could potentially be used, or a specialized query could be used in the
find() statement to retrieves a specific set of records for chart processing.

pChart - Multi-Series Charts - If the Foundset with Group/Sort property is selected, the generated
chart code will use:
X-Axis field - Will be used as the grouping field for the query.
Y-Axis field - If a Y-Axis field uses a Summary field which uses the X-Axis field as is source, the

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 93

count of values will be used for the data set.
Otherwise, the Y-Axis data values will be used for the found records. A sum of grouped values will
be calculated during the query, but it is left available to the developer to use if needed.

If a Foundset is specified without the Group/Sort property or the Current Record field values is
specified, the actual record values will be used for the data set created for the chart.

pChart Incorrect Data Values

Using incorrect data values for the Y-Axis will result in unusual looking (and incorrect) charts.
FileMaker 11 will ignore text values for the Y-Axis, but pChart builds an unusual looking chart
having negative bar values.

pChart Chart Differences Compared to FileMaker Charts

(pChart 2.1.1)
Legend areas cannot have a gradient blend, only a transparent background or solid background.
If the Legend border is not displayed, the legend background color is not displayed - the
background is transparent.
To change font style (bold, italic, underline) - manually change the TrueType font filename in the
generated PHP code.
Only a limited number of TrueType fonts are included with pChart, therefore a default font
'Verdana' is specified by default. This can be changed in the PHP Conversion Preferences.

pChart - Multi-Series Charts - X-axis titles don't get drawn with pChart 2.11. These titles appear to
have worked previously, by reviewing the sample charts in the pChart documentation. But there
are other issues with versions prior to 2.11, so reverting back to an earlier version is not
recommended.

Also, Y-Axis text overwrites the Y-Axis values (possible bug?).
Note: There is no 3D Bar chart or Area Chart feature available in pChart 2.11 to match the
FileMaker 3D chart implementation.

pChart Curve Fitting - Curve fitting is not supported by pChart but this feature might be supported
in the future. The following forum post is from the developer:
12/10/2010 "As of today, pChart can only draw Bezier curves based on your datasets. The curve
path has the constraint to go through each point without any interpolation."

Therefore FileMaker curve-fitting line charts are being drawn as line charts in pChart.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 94

pChart Object Positioning

FmPro Migrator attempts to estimate the correct size and location required for pChart to render
chart titles as well as the size and position of the chart. These values are estimated based upon
the amount of text required for the label, as well as the whether titles and legends are drawn on
the chart. It is likely that manual modification will be needed to reposition either the title text or the
chart rendering area.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 95

Manual Tasks - Fusion Charts Code

Fusion Charts - Foundset Usage

Within FileMaker Pro, the Y-Series database column for a chart will often be a Summary field.
Since SQL database servers work differently from FileMaker Pro, the Summary & Grouping
features are implemented within the PHP chart creation code. FmPro Migrator automatically
retrieves the Tablename::Fieldname referenced within the Summary field and uses the source
field as the Y-series field.

If the source of the Y-Series data was the Members::Company_Count column (a Summary field),
then the column name would be changed to use the Members::Company column in the PHP
code. Actually to be more accurate, the column name will use the CakePHP Model name followed
by the column name (Member.company). The model name will be based upon the original TO
Name on the RelationshipGraph.

The generated Fusion Chart scripts don't make use of the foundset Session array. So either the
foundset record ID array could potentially be used, or a specialized query could be used in the
find() statement which retrieves proper records for chart processing.

Fusion Charts - Multi-Series Charts - If the Foundset with Group/Sort property is selected, the
generated chart code will use:
X-Axis field - Will be used as the grouping field for the query.
Y-Axis field - If a Y-Axis field uses a Summary field which uses the X-Axis field as is source, the
count of values will be used for the data set.
Otherwise, the Y-Axis data values will be used for the found records. A sum of grouped values will
be calculated during the query, but it is left available to the developer to use if needed.

If a Foundset is specified without the Group/Sort property or the Current Record field values is
specified, the actual record values will be used for the data set created for the chart.

Fusion Charts - Differences Compared to FileMaker Charts

(Fusion Charts 3.2.1)
Legend areas cannot have a gradient blend, only a transparent background or solid background.
The FmPro Migrator generated legend background code would create a gradient blend for the
legend, if this feature was supported by Fusion Charts.

All JavaScript rendered 3D Pie charts (iPad), are rendered as 2D flat charts, and in some cases
the charts will be drawn past the edge of the chart boundary. JavaScript Pie charts do not display
legend info, but do display label/data info and gradients.

Data labels cannot have text Bold/Underline properties set via styles - but this is not an issue

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 96

because FileMaker doesn't allow this feature to be set anyhow.
Background radial gradients are not supported.
Fusion Charts requires Flash 8 or higher to be installed, otherwise the JavaScript fallback
technique will be used automatically (implemented in Highcharts).
Flash 10 or higher is required in order for clients to export the chart image.
If you want to display lines from the Pie chart slices to the labels - change smartLineAlpha from 0
to 100 (or any value in between).

Setting drop shadow doesn't seem to work (bug?).
showShadow='1' use3DLighting='1'

Setting label/data value color doesn't work using Style definition (bug?).

Fusion Charts - Multi-Series Combi Charts - X-axis labels don't seem to have an angle property.
All labels are drawn horizontally. But rotation of labels is available for other line/bar charts.

Fusion Charts - curve fitting is not supported by Fusion Charts, but is supported with the
MSSpline.swf file included in the Power Charts package, an additional $400 product. Therefore
FileMaker curve-fitting line charts are being drawn as line charts in Fusion Charts.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 97

Manual Tasks - Value Lists

Dynamic Value List - Include Only Related Records

Dynamic value lists retrieve and display either 1 or 2 fields from the specified database table,
depending upon the design of the original value list.
However, the "Include only related records" feature is not supported. Implementation of this
feature could be done by adding an additional condition to the query. But as with FileMaker
databases, if the specified table is not related to the current controller model, unexpected results
could occur.

Dynamic Value List Sorting/Grouping

Values are displayed and entered into the web form field from either the first, second or both
fields (just like FileMaker).
The resulting records are always grouped (duplicates removed) and an ascending sort is
performed on the values.

Columns of Radio Buttons And Checkboxes

FileMaker displays Radio Buttons and Checkboxes in multiple columns on the layout if the field
object is tall and wide enough. FmPro Migrator attempts to simulate this same visual behavior for
Radio Button and Checkbox Groups taller than 20 pixels and wider than 94 pixels. Depending
upon the average widths of the value list items, it may be necessary to manually change the
number of columns which have been estimated by FmPro Migrator. This change can be made in
the calls to the prepareInputGroup() function located within the form controller file for any form.

An example of this form controller code follows:

$this->set("tbl_assets__checkbox_test_fld110_group",$this->prepareInputGroup("checkbox","tbl_assets__checkbox_test_
','2'));

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 98

The last parameter represents the number of columns to display, and in this example 2 columns
will be displayed.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 99

Manual Tasks - Tab Controls

Tab Control Tab Label Text

The labels of tab controls will always be created using black text, using the default text font and
size.
Note: It has not been possible to reliably retrieve this information from the layout XML style info for
the tab panel.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 100

Manual Tasks - jqGrid PHP Code

jqGrid Edit Mode Menus

jqGrid objects created for edit.ctp view files include record editing capability. Part of this editing
capability includes having menus available for fields which were configured with a menu on the
FileMaker layout.
Since the jqGrid is implemented as a separate file of PHP code, these menus are not directly
integrated with the CakePHP controller code.

jqGrid - Adding Value List Definition

It is easy to manually copy static value list definition code from the app_controller.php file into the
generated grid PHP file.
Line # 64 shows the unmodified line of code, with an empty value list definition.
Line #72 shows the value list definition array, which has been copied from the app_controller.php
file.

Dynamic value lists will require more work, because the jqGrid does not make use of the models
defined within the CakePHP application.

jqGrid - Minimum Vertical Size

Web based Grid objects require more vertical space compared to FileMaker portals. Therefore, if
a FileMaker portal is displayed too small, the web based grid (created by jqGrid), will not always
be usable. The minimum usable size for a grid is generally about 100 pixels tall, due to the
header row at the top of the grid and the footer row of controls at the bottom of the grid. Even at

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 101

this size, the grid may only display about 1 row of related row data.

jqGrid - List of Grid Fields

It may not always be possible for FmPro Migrator to figure out exactly which fields are contained
within the portal, especially if the fields were actually created before the portal object. Therefore
some converted portals may require manual code changes within the generated php code.

jqGrid - Checkbox Sets, Radio Button Sets, Image Fields

The jqGrid does not support radio buttons, checkboxes, multi-line portal rows, images, buttons
objects, or vector graphic objects drawn within the rows of the portal. Therefore radio button and
checkbox fields will be created as regular text fields. Other objects will be omitted.

jqGrid - Multi-Table Joins

SQL code for multi-table joins needs to be completed manually within the jqGrid portal files. The
names of the fields and tables will be generated automatically, but the joins required in the
WHERE clause will need to be written manually. Since the jqGrid cannot be directly integrated
within the CakePHP controller code, the automatic table joins done within the CakePHP models
cannot be used for gathering records for the jqGrid.

jqGrid - Column Labels

There is no practical way to automatically transfer the text labels above a FileMaker portal into the
grid object. These column labels will need to be manually entered into the jqGrid .php file. By
default, FmPro Migrator uses the column name as the label for each column of the grid.

jqGrid - Supported Database Servers

The following database servers are supported for Read/Write usage with the jqGrid object. The
jqGrid makes a direct connection to the following database servers in order to provide Read/Write
access to the records in the grid.

MySQL 5.x+ (PDO)
PostgreSQL versions 7.x+ (PDO)
SQLite versions 3.x+ (PDO)
Microsoft SQL Server 2005+
Oracle 8+
MySQL (through Mysqli)
DB2 (IBM DB2 functions)
MongoDB

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 102

ODBC connectivity to FileMaker or any other ODBC data source is not supported because the
jqGrid cannot have enough control over the ODBC database connection to work with large data
sets.

jqGrid - Date Picker Columns

It is possible to set a jquery DataPicker for jqGrid columns in edit mode. This code can be
configured manually within the jqGrid setup code.

jqGrid - Foundset Mode

After doing a query, the web application will be running in Foundset mode, with a list of the
primary key values passed thru the foundset Session variable. As long as the foundset Session
variable is present, the user will be re-directed back to the querylist.ctp view file.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 103

Manual Tasks - Global Fields, Calculation Fields

Global fields, Stored and Unstored Calc fields will require manual changes after the automated
conversion process.

Global Fields - Defined Within App Controller

Global fields are defined within the app_controller.php file within the beforeFilter() function. These
values are initialized (if necessary) and stored within SESSION variables for each user. This
means that global fields which are changed by scripts will have their values persist for the user of
the web application. The initial value for each of these global fields should be manually updated
within the beforeFilter() before the application is run the first time. Otherwise they will get initialized
to an empty value and not reset afterwards. If this occurs, just comment out the if statement and
its enclosing brace, let the app run once, then uncomment these lines.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 104

Global Fields - Defined Within Model Files

Global fields are incorporated within the web application in a manner which makes the data
appear to come from the database. Globals can easily be used within the PHP web application by
simply reading from or writing into the model. Therefore using a global field on a layout will result
in it being usable in the same manner within the web application. To implement this functionality,
the contents of global fields are automatically saved back into SESSION memory by the
beforeSave() function whenever a record is added or updated.

Also, the afterFind() function replaces any globals read from the database table with the latest
current data stored within SESSION memory for the current user.

Stored Calculation Fields - Defined Within Model Files

Stored Calculation fields get calculated before a record is saved into the database within the
beforeSave() model function.
Simple arithmetic or concatenation calculations are converted automatically into PHP code.
Calculations containing function calls (or even a single open parenthesis character) are always
commented out, requiring manual conversion by the PHP developer.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 105

Unstored Calculation Fields - Defined Within View Controller Files

Unstored Calculation fields are calculated before the value is used within the view controller file,
within the view and edit actions. Simple arithmetic or concatenation calculations are converted
automatically into PHP code. Calculations containing function calls (or even a single open
parenthesis character) are always commented out, requiring manual conversion by the PHP
developer.

This example code shows the conversion of a SuperContainer URL which concatenates a global
field, the primary key column field and static text defining the SuperContainer options.

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 106

Manual Tasks - Other Items

Vertical vs Horizontal Checkbox and Radio Button Sets

Radio Buttons and Checkboxes which are taller than 20 pixels, will be assumed to be vertically
oriented objects - and will created with a "
" HTML tag separating each value. This feature can
be changed within the controller code for of the view.

The same code also offers the option for an additional column which defines the number of
columns to display.

Layout Names - Spaces and Special Characters

CakePHP does not allow controllers having more than one underscore character between letters
of the controller name. FmPro Migrator automatically removes extra spaces, underscore or
special characters during the conversion process. This change will result in controller names
which look a little different from the original layout names.

Object Rotation on Layouts

Web browsers don't reliably support object rotation properties, therefore this feature is not
implemented, by design. In fact, none of the major web browsers currently supports the CSS3
rotation properly. If an image object is rotated incorrectly in the generated web form, it may be
possible to change the contents of the image object within the app/webroot/img directory so that it
will be automatically changed within all views of the generated project. This workaround will not
solve the problem of an image object used in multiple places, with different rotation properties.

Otherwise, rotated image objects should be created as graphic objects place directly onto the
layout.

Merge Fields

Merge fields are embedded within text labels within the original layout. When a merge field is
found within a text label, the field definition is added within the text of the text label. Merge fields
embedded within blocks of text including Unicode characters will require manual changes to the

FmPro Migrator - FileMaker Pro to PHP Conversion Procedure - 107

text and field output to wrap the text within an htmlentities() function for proper display of unicode
characters.

Layout Symbol Objects

The following layout symbol objects are supported (for FileMaker 12 and earlier versions):
{{CurrentDate}} or // - Current date, in mm/dd/yyyy format, displayed based upon the locale of the
server where the PHP code is executed.
{{CurrentTime}} or :: - Current time, in 24hr HH:MM:SS format, displayed based upon the locale of
the server where the PHP code is executed.
{{UserName}} or || - Current logged in username. Note: An error will be generated if the
isAuthorized() function has not been uncommented within the app_controller.php file.
{{RecordNumber}} or @@ - Current record number. This symbol is displayed as the actual
position of the record within the current foundset. The code within the layout controller which
retrieves the $record_position value is commented out unless there is a record number symbol
on the layout in order to improve performance. This value has to be calculated by retrieving the list
of primary key values from the database for every record, since there is no record position value
available from SQL database servers. This value is calculated from foundsets automatically
based upon using the list of primary keys already stored in the foundset session variable.
{{PageNumber}} or ## - Current page number. This symbol is generally only applicable to
printing, and within FileMaker will be displayed as a "?" placeholder if not in print preview mode.
This symbol is replaced with the CakePHP Paginator page# of the current page of records being
displayed.

	FmPro Migrator - FileMaker Pro to PHP Conversion Procedure
	Table of Contents
	Step 1 - Import Database Info - FileMaker Pro
	Licensing FmPro Migrator
	Demo Edition Dialog
	Demo Mode - About Tab
	About/License Window
	Pasting License Key

	Importing FileMaker Pro Database Info - PHP Conversion
	FileMaker 12+ Notes
	FileMaker 11 Notes - Unicode Characters
	FileMaker 11 Notes - Container Field Image Transfer
	Pre-Migration Tasks - PHP Conversion
	Manual Layout Changes
	A Note About Other Databases
	Importing FileMaker Pro Database Info into FmPro Migrator

	Step 1 - Import Database Info - Microsoft Access
	Importing Microsoft Access Database Info

	Step 1 - Import Database Info - Visual FoxPro
	Importing Visual FoxPro Applications

	PHP Conversion Processing
	PHP Conversion Preferences
	Configuring Preferences
	Prefs Storage Locations
	Application Preference Items
	Building Basic Authentication Tables
	Data Access Options
	Enabling the Navigation Toolbar
	4 Navigation Toolbars

	PHP Conversion - Preflight Check
	Preflight Check Dialog

	Using Licensed Mode - PHP Conversion
	PHP Conversion Properties
	Migration Statistics

	About the Generated PHP Web Application
	PHP Conversion - Database Configuration Notes
	SQL Server Configuration Notes
	Oracle Configuration Notes

	Using the Generated Web Application
	Opening the app1 Web Application
	CakePHP Startup Page
	Debug = 0 Result
	Default Web Application Page
	Assets Layout Controller - index.ctp view

	Files Which Are Preserved When Re-Generating the Application
	Database.php
	Core.php

	Generated Report Files
	CakePHP Project Errors.txt
	Conversion Summary Results.txt
	create_indexes.sql
	Duplicate Objects Report.xls
	Missing Table Report.txt
	Script to Layout Object Report.txt
	Script to Layout Usage Report.txt

	Upgrading Web Application Components
	CakePHP Framework Files
	pChart Framework
	Fusion Charts
	jquery.js
	jqGrid
	Everything Else...

	Customizing the Generated Web Application
	Changing the Application Root Web Page
	Changing the Application Default Page
	Gritter Dialogs - Timeout/Sticky Settings
	Gritter Dialogs - Background Image Color, Size, Transparency
	Changing Value List Values

	Web Browser Compatibility
	Summary
	IE6 on Windows XP [Deprecated Browser]
	IE7 on Windows XP
	IE8 on Windows XP
	IE9 on Windows 7
	Safari 5 - Windows
	Safari 5 on MacOS X
	Safari 5 on IOS 5
	FireFox - MacOS X
	Google Chrome on MacOS X

	Layout Object Script Steps to JavaScript/PHP Conversion
	14 Commonly Used Script Steps
	JavaScript Compatibility Notes & Image Objects

	Using the ExtJS Grid
	Downloading ExtJS
	Pre-Conversion Portal Size Consideration
	Selecting ExtJS in Preferences
	ExtJS Web Folder Location
	ExtJS Grid File Locations
	ExtJS Grid - View Form Usage
	ExtJS Grid - Edit Usage
	ExtJS Grid Limitations

	Using Save Records as PDF
	app_controller save_records_as_pdf function
	Advantages of Using html2ps for PDF Creation
	Disadvantages of Using html2ps for PDF Creation
	An Alternative to Using html2ps

	PHP Conversion - Manual Tasks
	Manual Tasks - Login & Role Based Security
	Authentication Preferences Setting
	Add User Link - Default Page
	User Accounts List
	Editing a User Account
	Authentication Code - app_controller.php
	Changing the Default Email Address in Recover Action
	Adding Additional Layout Controller Authentication
	Reset Password Feature - Step 1 - Click Forgot Password Button
	Reset Password Feature - Step 2 - Enter Email
	Reset Password - Token Table Record
	Reset Password Feature - Step 3 - Click Verify Link
	Reset Password Feature - Step 3 - Password Changed View
	Reset Password Feature - Step 4 - Click Email Link
	Reset Password - Step 5 - Login
	Reset Password - Step 6 - Change Password
	Login Redirect
	Summary of Built-in Roles
	Sharing Logins Between Applications

	Manual Tasks - Model Files
	A FileMaker Example Relationship
	Generated client.php Model hasMany Definition
	Client to Horse - Condition Array Changes
	Validation Code - Calculation Formulas
	Validation Text Messages
	Summary and Calculated Fields
	Using a SQL View in a Model file
	Missing Relationships

	Manual Tasks - Too Many Relationships
	Too Many Relationships
	Simplifying Relationship Calculations
	AppController.php Changes
	Toolbars Controller Changes
	<Form>Controller.php Changes

	Manual Tasks - View Files
	Text Object Size
	Object Layering
	Multi-Segment Image Objects
	Adding FileMaker Layout Part Background Colors in CakePHP View Files
	FileMaker 13 Popover Objects
	query Popover CSS

	Manual Tasks - Controller Files and Converted PHP Scripts
	Converted Scripts
	Button Code

	Manual Tasks - pChart Code
	Rendering pChart Charts to Image Files
	pChart FoundSet Usage
	pChart Incorrect Data Values
	pChart Chart Differences Compared to FileMaker Charts
	pChart Object Positioning

	Manual Tasks - Fusion Charts Code
	Fusion Charts - Foundset Usage
	Fusion Charts - Differences Compared to FileMaker Charts

	Manual Tasks - Value Lists
	Dynamic Value List - Include Only Related Records
	Dynamic Value List Sorting/Grouping
	Columns of Radio Buttons And Checkboxes

	Manual Tasks - Tab Controls
	Tab Control Tab Label Text

	Manual Tasks - jqGrid PHP Code
	jqGrid Edit Mode Menus
	jqGrid - Adding Value List Definition
	jqGrid - Minimum Vertical Size
	jqGrid - List of Grid Fields
	jqGrid - Checkbox Sets, Radio Button Sets, Image Fields
	jqGrid - Multi-Table Joins
	jqGrid - Column Labels
	jqGrid - Supported Database Servers
	jqGrid - Date Picker Columns
	jqGrid - Foundset Mode

	Manual Tasks - Global Fields, Calculation Fields
	Global Fields - Defined Within App Controller
	Global Fields - Defined Within Model Files
	Stored Calculation Fields - Defined Within Model Files
	Unstored Calculation Fields - Defined Within View Controller Files

	Manual Tasks - Other Items
	Vertical vs Horizontal Checkbox and Radio Button Sets
	Layout Names - Spaces and Special Characters
	Object Rotation on Layouts
	Merge Fields
	Layout Symbol Objects

